Homework Assignment # 5.

Plan for next week: 12.3 (Jordan canonical form).

Problems, to be submitted by Thu, March 4th.

Problem 1: Let R be a PID. For an R-module M define rk(M) to be the minimal size of a generating set of M.

(a) Let M be a finitely generated R-module and $R/a_1R \oplus \ldots \oplus R/a_mR \oplus R^s$ its invariant factor decomposition, that is, a_1, \ldots, a_m are nonzero non-units and $a_1 \mid a_2 \mid \ldots \mid a_m$. Prove that $\operatorname{rk}(M) = m + s$. Warning: It is not true in general that $\operatorname{rk}(P \oplus Q) = \operatorname{rk}(P) + \operatorname{rk}(Q)$.

(b) Let F be a free R-module of rank n with basis e_1, \ldots, e_n , let N be the submodule of F generated by some elements $v_1, \ldots, v_n \in F$, and let $A \in Mat_n(F)$ be the matrix such that

$$\left(\begin{array}{c} v_1\\ \vdots\\ v_n \end{array}\right) = A \left(\begin{array}{c} e_1\\ \vdots\\ e_n \end{array}\right)$$

Find a simple condition on the entries of A which holds if and only if rk(F/N) = n.

Problem 2: DF, Problem 6, page 488.

Problem 3: DF, Problem 9, page 489. First two matrices are for practice.

Problem 4: (a) Recall that for a matrix A we denoted by $\chi_A(x)$ and $\mu_A(x)$ its characteristic and minimal polynomials, respectively.

Determine the number of possible RCFs of 8×8 matrices A over \mathbb{Q} with $\chi_A(x) = x^8 - x^4$. Explain your argument in detail.

(b) (practice) Determine the number of possible RCFs of 10×10 matrices A over \mathbb{Q} with $\mu_A(x) = x^6 - x^2$. Do the same for matrices over \mathbb{C} .

Problem 5: (a) (practice) Prove that two 3×3 matrices over some field F are similar if and only if they have the same minimal and characteristic polynomials. Give an example showing that this does not hold for 4×4 matrices.

(b) A matrix A is called idempotent if $A^2 = A$. Prove that two idempotent $n \times n$ matrices are similar if and only if they have they same rank. **Hint:** What is the minimal polynomial of an idempotent matrix? How does rank relate to eigenvalue 0?

Problem 6: Find the number of distinct conjugacy classes in the group $GL_3(\mathbb{Z}/2\mathbb{Z})$ and specify one element in each conjugacy class.