Homework Assignment # 10.

Plan for the next week:

Lecture 24 (April 20): Solvability of equation by radicals

Lecture 25 (April 22): Fundamental theorem of Algebra. Inverse Limits.

Problems, to be submitted by Thu, April 22nd.

Problem 1: Before doing this problem, read the first half of Section 14.4 in DF (pp. 591-593).

Definition 1: Let L/F be a finite separable extension and let \overline{F} be an algebraic closure of F containing L. A subfield L' of \overline{F} is called **conjugate** to L over F if $L' = \sigma(L)$ for some F-embedding of σ into \overline{F} . Note that L/F is Galois if and only if L does not have any F-conjugates besides L itself.

Definition 2: A finite extension K/F is called a *p*-extension if K/F is Galois and Gal(K/F) is a *p*-group.

- (a) Let L/F be a separable extension of degree n, and let K be the Galois closure of L over F. Prove that K can be written as a compositum L₁L₂...L_n where L₁,...L_n are (not necessarily distinct) conjugates of L over F.
- (b) Let K/F and L/F be finite *p*-extensions. Prove that KL/F is also a *p*-extension.
- (c) Suppose K/L and L/F are both *p*-extensions, and let *M* be the Galois closure of *K* over *F* (note: we do not know whether K/F is Galois or not). Prove that M/F is also a *p*-extension. **Hint:** use (a) and (b)
- (d) Now assume only that L/F is a separable extension with [L : F] a power of p, and let M be the Galois closure of L over F. Prove that [M : F] need not be a power of p.

Problem 2: Let p and q be distinct primes with q > p, and let K/F be a Galois extension of degree pq. Prove that

- (a) There exists a field L with $F \subseteq L \subseteq K$ and [L:F] = q
- (b) There exists a unique field M with $F \subseteq M \subseteq K$ and [M : F] = p.

Problem 3: Let f(x) and g(x) be irreducible polynomials in $\mathbb{F}_p[x]$ of the same degree and let $F = \mathbb{F}_p[x]/(f(x))$. Prove that g(x) splits completely over F.

Problem 4: DF, Problem 7 on p. 596.

Problem 5: Let $\overline{\mathbb{F}}_p$ be an algebraic closure of \mathbb{F}_p , and as in class let $\mathbb{F}_{p^n} = \{x \in \overline{\mathbb{F}}_p : x^{p^n} = x\}.$

- (a) Prove that $\overline{\mathbb{F}}_p = \bigcup_{n=1}^{\infty} \mathbb{F}_{p^n}$.
- (b) Prove that the Galois group $\operatorname{Gal}(\overline{\mathbb{F}}_p/\mathbb{F}_p)$ is uncountable (complete the argument outlined in class).

Problem 6: Prove the following analogue of Kummer's theorem for abelian extensions: Let $n \in \mathbb{N}$ and let F be a field containing primitive n^{th} root of unity.

- (a) Let K/F be a finite Galois extension such that $\operatorname{Gal}(K/F)$ is abelian of exponent *n*. Then there exists $a_1, \ldots, a_t \in K$ s.t. $K = F(\sqrt[n]{a_1}, \ldots, \sqrt[n]{a_t})$, or more precisely, there exists $\alpha_1, \ldots, \alpha_t \in K$ s.t. $K = F(\alpha_1, \ldots, \alpha_t)$ and $\alpha_i^n \in F$ for all *i*.
- (b) Conversely, suppose that $K = F(\sqrt[n]{a_1}, \ldots, \sqrt[n]{a_t})$ for some $a_1, \ldots, a_t \in F$. Prove that K/F is Galois, and $\operatorname{Gal}(K/F)$ is abelian of exponent n.

Hint: For (b) use one of the problems in the previous homework.