Homework #7

Plan for next week: Simple groups and proof of simplicity of A_n (4.6) . Jordan-Hölder Theorem (3.4) . Classification of finitely generated abelian groups with applications (5.2)

Problems, to be submitted by 11:59pm on Thu, October 22nd

1. DF, Problem 19 on page 131. Note: if G is a finite group, $x \in G$ and $\mathcal{K}(x)$ is the conjugacy class of x in G, then

$$
|\mathcal{K}(x)| = [G : C_G(x)]
$$

(this is just the orbit-stabilizer formula applied to the conjugation action of G on itself).

2.

- (a) Prove Lemma 15.7 from class: Let H, K be groups, let φ and ψ be homomorphisms from K to Aut (H) , and assume that there exists $\theta \in Aut(K)$ such that $\varphi \circ \theta = \psi$. Prove that $H \rtimes_{\varphi} K \cong H \rtimes_{\psi} K$.
- (b) DF, Problem 6 on page 184. Note: you will need to use a result from one of the first three homeworks.

3. The goal of this problem is to complete classification of groups of order 56 (we discussed the outline in Lecture 16).

- (a) Let p be a prime, let P be a finite abelian p-group, and let H be a finite group with $p \nmid |H|$. Let φ_1 and φ_2 be homomorphisms from H to Aut(P), and let $G_i = P \rtimes_{\varphi} H$ for $i = 1, 2$. Suppose that $G_1 \cong G_2$. Prove that $\text{Ker}(\varphi_1) \cong \text{Ker}(\varphi_2)$. **Hint:** Compute the centralizer of P in $P \rtimes_{\varphi} H$.
- (b) Let Q be a group of order 8, let $\Omega_4(Q)$ be the set of subgroups of Q isomorphic to \mathbb{Z}_4 , and let $\Omega_{2,2}(Q)$ be the set of subgroups of Q isomorphic to $\mathbb{Z}_2 \oplus \mathbb{Z}_2$. Prove that $\text{Aut}(Q)$ acts transitively on each of the sets $\Omega_4(Q)$ and $\Omega_{2,2}(Q)$. Note: Most likely you will need to argue separately for each isomorphism class.
- (c) Now justify the entries in the right columns of the table on page 2 of class notes of Lecture 16 (they describe the number of isomorphic classes of groups of order 56 covered by the given case; you do not need to justify the entries for the number of homomorphisms). **Hint:** most likely you will need to use both parts

of Problem 2, $3(a)$, $3(b)$, and the fact that a homomorphism from a given group G whose image has order ≤ 2 is completely determined by its kernel.

4. Redo Problem 4 on the first midterm (unless you got full credit). If you did not get a correct answer on the midterm, I encourage you to start with an easier problem – find the number of ideals of $\mathbb Z$ which contain 12 – and then generalize.

5. Let G be a group, let H_1, \ldots, H_n be a finite collection of subgroups of G, and let $H_1 \times \ldots \times H_n$ denote their external direct product. Prove that the following three conditions are equivalent (note that (b) and (c) by themselves consist of several "subconditions"):

(a) The map $\varphi: H_1 \times \ldots \times H_n \to G$ given by

$$
\varphi((h_1,\ldots,h_n))=h_1h_2\ldots h_n
$$

is a group isomorphism (the product on the right-hand side is taken in G)

- (b) The following hold:
	- (i) For any $i \neq j$ the subgroups H_i and H_j commute elementwise,
	- (ii) For any *i* we have $H_i \cap H'_i = \{1\}$ where $H'_i = \langle H_j : j \neq i \rangle$, the subgroup generated by all H_j 's besides H_i

(iii) $G = \langle H_j : 1 \leq j \leq n \rangle$

- (c) The following hold:
	- (i) Each H_i is normal in G
	- (ii) For any *i* we have $H_i \cap H'_i = \{1\}$ where $H'_i = \langle H_j : j \neq i \rangle$, the subgroup generated by all H_j 's besides H_i
	- (iii) $G = \langle H_j : 1 \leq j \leq n \rangle$