Homework #4

Plan for next week: Group actions (§ 4.1-4.3). Start direct and semi-direct products (§ 5.4-5.5).

Problems, to be submitted by 11:59pm on Thu, October 1st

1. Let k be an algebraically closed field. Let Y be a subset of k^n . Let

$$
k[Y] = k[x_1, \ldots, x_n]/I(Y).
$$

The ring $k[Y]$ can be naturally identified with the ring of polynomial functions from Y to k (with pointwise addition and multiplication). Indeed, every polynomial in $k[x_1, \ldots, x_n]$ naturally defines a function from Y to k. Thus, we have a map $ev_Y : k[x_1, \ldots, x_n] \to Func(Y, k)$. By polynomial functions from Y to k we mean exactly the functions in Im (ev_Y) . It is straightforward to check that ev_Y is a ring homomorphism and thus

$$
\mathrm{Im}\,(ev_Y)\cong k[x_1,\ldots,x_n]/\mathrm{Ker}\,(ev_Y)
$$

Finally, by definition Ker $(ev_Y) = I(Y)$, and thus $k[Y] \cong \text{Im}(ev_Y)$.

Let $O(Y)$ be the set of all everywhere defined rational functions on Y, that is, all functions $f: Y \to k$ for which there exist polynomials $p, q \in k[x_1, \ldots, x_n]$ s.t. q does not vanish at any point of Y and $f = p/q$ as a function on Y. Clearly, $k[Y] \subseteq O(Y)$.

- (a) Prove that if Y is an algebraic set, then $O(Y) = k[Y]$. **Hint:** Use the weak Nullstellensatz, version 2.
- (b) Let $Y = k^1 \setminus \{0\}$, the affine line with 0 removed. Prove that $k[Y] = k[x]$ (polynomials in one variable) while $O(Y) = k[x, 1/x]$.
- (c) Find an algebraic subset Z of k^2 such that $k[Z] \cong k[x, 1/x]$. How is Z related to Y from part (b)?
- (d) Find a non-algebraic subset W of k^2 for which $O(W) = k[W] \cong$ $k[x_1, x_2]$.

2. Let R be a commutative ring with 1, and let $n \in \mathbb{N}$. Let $End(R^n)$ be the set of all endomorphism of the additive group $(R^n, +)$.

(a) Define $\iota: Mat_n(R) \to End(R^n)$ by $\iota(A) = (v \mapsto Av)$ (or, in more elementary notation, $(\iota(A)(v)) = Av$ for all $v \in R^n$). Here we think of elements of R^n as column vectors. Prove that ι is an injective homomorphism of monoids.

- (b) Now define $\Phi: End(R^n) \to Mat_n(R)$ as in Lecture 10 (in Lecture 10 we dealt with the special case $R = \mathbb{Z}$, but definition remains the same – e_i is still the element of R^n whose i^{th} coordinate is 1 and other coordinates are 0). Prove that $\Phi \circ \iota$ is the identity map on $Mat(R^n)$. Deduce that Φ is always surjective.
- (c) By (a) and (b) Φ is an injective \iff Φ is an isomorphism \iff is an isomorphism. In Lecture 10 we observed that Φ is injective for $R = \mathbb{Z}$. Determine (with proof) if Φ is injective for each of the following rings: (i) $R = \mathbb{Z}_m$ for some $m \in \mathbb{N}$, (ii) $R = \mathbb{Q}$, (iii) $R = \mathbb{Z}[\sqrt{2}]$.

Note that whenever Φ is an isomorphism, by taking the units on both sides, we get that $\text{Aut}(R^n) \cong GL_n(R)$.

3. Let G be a group. For each $g \in G$ let $\iota_q : G \to G$ be the conjugation by g, that is, $\iota_g(x) = gxg^{-1}$. Recall that $\iota_g \in \text{Aut}(G)$ for any $g \in G$ and the mapping $\iota : G \to \text{Aut}(G)$ given by $\iota(g) = \iota_g$ is a homomorphism. Elements of the subgroup $\text{Inn}(G) = \iota(G)$ of $\text{Aut}(G)$ are called inner automorphisms.

- (a) Prove that for any $g \in G$ and $\sigma \in Aut(G)$ one has $\sigma \iota_g \sigma^{-1} =$ $\iota_{\sigma(g)}$. Deduce that Inn (G) is a normal subgroup of $Aut(G)$.
- (b) Let H be a normal subgroup of G. Note that for each $g \in G$, the mapping ι_q restricted to H is an automorphism of H. By slight abuse of notation we denote this automorphism of H by ι_g as well. Prove that ι_g is an inner automorphism of H if and only if $g \in H \cdot C_G(H)$ where $C_G(H)$ is the centralizer of H in G.

4. Find the minimal *n* for which the symmetric group S_n contains an element of order 15 (and prove rigorously why your n is indeed minimal). *Note:* All you need to know about S_n for this problem is stated in Section 1.3 of DF (pp.29-32).

5. Let $G = D_8$, the dihedral group of order 8 (that is, the group of isometries of a square). Prove that $|[G, G]| = 2$ and describe $[G, G]$ explicitly without computing every single commutator.

Index of a subgroup. If G is a group and H is a subgroup of G, the index of H in G, denoted by $[G:H]$, is defined to be the cardinality of G/H , that is, the number of left cosets of H in G. It is not hard to show that the sets G/H (the set of left cosets of H) and $H \setminus G$ (the set of right cosets of H) always have the same cardinality, so there is no need to introduce "left index" and "right index".

2

The full statement of Lagrange theorem asserts that if G is a finite group and H is a subgroup of G, then $[G: H] = \frac{|G|}{|H|}$ (typically one applies not the full statement but its most useful consequence, namely, that the order of H divides the order of G).

6. Let G be a group and let H and K be subgroups of G of finite index (note that G is not assumed to be finite).

- (a) Assume that $H \subseteq K$. Prove that $[G : H] = [G : K][K : H]$.
- (b) Let $m = [G : H]$ and $n = [G : K]$. Prove that

 $LCM(m, n) \leq [G : H \cap K] \leq mn$

(where LCM is the least common multiple).

Hint for (a): If A is a group and B a subgroup of A, a subset S of A is called a left transversal of B in A if S contains precisely one element from each left coset of B (an alternative name for a transversal is a system of left coset representatives). Let ${g_1, \ldots, g_r}$ be a left transversal of K in G and $\{k_1, \ldots, k_s\}$ a left transversal of H in K. Prove that $\{g_i k_j\}_{1 \leq i \leq r, 1 \leq j \leq s}$ is a left transversal for H in G. Recall that if B is a subgroup of a group G, then $xB = yB \iff x^{-1}y \in B$ for $x, y \in G$.