
Homework #4

Plan for next week: Group actions (§ 4.1-4.3). Start direct and

semi-direct products (§ 5.4-5.5).

Problems, to be submitted by 11:59pm on Thu, October 1st

1. Let k be an algebraically closed field. Let Y be a subset of kn. Let

k[Y ] = k[x1, . . . , xn]/I(Y ).

The ring k[Y ] can be naturally identified with the ring of polynomial

functions from Y to k (with pointwise addition and multiplication).

Indeed, every polynomial in k[x1, . . . , xn] naturally defines a function

from Y to k. Thus, we have a map evY : k[x1, . . . , xn] → Func(Y, k).

By polynomial functions from Y to k we mean exactly the func-

tions in Im (evY ). It is straightforward to check that evY is a ring

homomorphism and thus

Im (evY ) ∼= k[x1, . . . , xn]/Ker (evY )

Finally, by definition Ker (evY ) = I(Y ), and thus k[Y ] ∼= Im (evY ).

Let O(Y ) be the set of all everywhere defined rational functions on

Y , that is, all functions f : Y → k for which there exist polynomials

p, q ∈ k[x1, . . . , xn] s.t. q does not vanish at any point of Y and f = p/q

as a function on Y . Clearly, k[Y ] ⊆ O(Y ).

(a) Prove that if Y is an algebraic set, then O(Y ) = k[Y ]. Hint:

Use the weak Nullstellensatz, version 2.

(b) Let Y = k1 \ {0}, the affine line with 0 removed. Prove that

k[Y ] = k[x] (polynomials in one variable) whileO(Y ) = k[x, 1/x].

(c) Find an algebraic subset Z of k2 such that k[Z] ∼= k[x, 1/x].

How is Z related to Y from part (b)?

(d) Find a non-algebraic subset W of k2 for which O(W ) = k[W ] ∼=
k[x1, x2].

2. Let R be a commutative ring with 1, and let n ∈ N. Let End(Rn)

be the set of all endomorphism of the additive group (Rn,+).

(a) Define ι : Matn(R) → End(Rn) by ι(A) = (v 7→ Av) (or, in

more elementary notation, (ι(A)(v)) = Av for all v ∈ Rn). Here

we think of elements of Rn as column vectors. Prove that ι is

an injective homomorphism of monoids.
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(b) Now define Φ : End(Rn)→ Matn(R) as in Lecture 10 (in Lec-

ture 10 we dealt with the special case R = Z, but definition

remains the same – ei is still the element of Rn whose ith coor-

dinate is 1 and other coordinates are 0). Prove that Φ ◦ ι is the

identity map on Mat(Rn). Deduce that Φ is always surjective.

(c) By (a) and (b) Φ is an injective ⇐⇒ Φ is an isomorphism

⇐⇒ ι is an isomorphism. In Lecture 10 we observed that Φ

is injective for R = Z. Determine (with proof) if Φ is injective

for each of the following rings: (i) R = Zm for some m ∈ N, (ii)

R = Q, (iii) R = Z[
√

2].

Note that whenever Φ is an isomorphism, by taking the units on both

sides, we get that Aut(Rn) ∼= GLn(R).

3. Let G be a group. For each g ∈ G let ιg : G→ G be the conjugation

by g, that is, ιg(x) = gxg−1. Recall that ιg ∈ Aut(G) for any g ∈ G and

the mapping ι : G → Aut(G) given by ι(g) = ιg is a homomorphism.

Elements of the subgroup Inn (G) = ι(G) of Aut(G) are called inner

automorphisms.

(a) Prove that for any g ∈ G and σ ∈ Aut(G) one has σιgσ
−1 =

ισ(g). Deduce that Inn (G) is a normal subgroup of Aut(G).

(b) Let H be a normal subgroup of G. Note that for each g ∈ G,

the mapping ιg restricted to H is an automorphism of H. By

slight abuse of notation we denote this automorphism of H by

ιg as well. Prove that ιg is an inner automorphism of H if and

only if g ∈ H · CG(H) where CG(H) is the centralizer of H in

G.

4. Find the minimal n for which the symmetric group Sn contains

an element of order 15 (and prove rigorously why your n is indeed

minimal). Note: All you need to know about Sn for this problem is

stated in Section 1.3 of DF (pp.29-32).

5. Let G = D8, the dihedral group of order 8 (that is, the group of

isometries of a square). Prove that |[G,G]| = 2 and describe [G,G]

explicitly without computing every single commutator.

Index of a subgroup. If G is a group and H is a subgroup of G, the

index of H in G, denoted by [G : H], is defined to be the cardinality

of G/H, that is, the number of left cosets of H in G. It is not hard to

show that the sets G/H (the set of left cosets of H) and H \ G (the

set of right cosets of H) always have the same cardinality, so there is

no need to introduce “left index” and “right index”.
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The full statement of Lagrange theorem asserts that if G is a finite

group and H is a subgroup of G, then [G : H] = |G|
|H| (typically one

applies not the full statement but its most useful consequence, namely,

that the order of H divides the order of G).

6. Let G be a group and let H and K be subgroups of G of finite index

(note that G is not assumed to be finite).

(a) Assume that H ⊆ K. Prove that [G : H] = [G : K][K : H].

(b) Let m = [G : H] and n = [G : K]. Prove that

LCM(m,n) ≤ [G : H ∩K] ≤ mn

(where LCM is the least common multiple).

Hint for (a): If A is a group and B a subgroup of A, a subset S

of A is called a left transversal of B in A if S contains precisely one

element from each left coset of B (an alternative name for a transversal

is a system of left coset representatives). Let {g1, . . . , gr} be a left

transversal of K in G and {k1, . . . , ks} a left transversal of H in K.

Prove that {gikj}1≤i≤r,1≤j≤s is a left transversal for H in G. Recall

that if B is a subgroup of a group G, then xB = yB ⇐⇒ x−1y ∈ B
for x, y ∈ G.


