
Homework #9.

Plan for next week: Unique Factorization Domains (8.3, 9.3) and

Irreducibility criteria in polynomial rings (9.4). Note that we already

discussed some of the main results from 8.3.

Problems, to be submitted by Thursday, November 7th

1. Let Z[i] = {a+ bi : a, b ∈ Z} be the ring of Gaussian integers.

(a) Prove that Z[i] is a Euclidean domain.

(b) Prove that Z[i] ∼= Z[x]/(x2 + 1)

(c) Now use (a) and (b) to find all maximal ideals of Z[x] (the ring

of polynomials over Z in one variable) which contain x2 +1 and

15. If you have not studied Gaussian integers before, carefully

read the corresponding section in DF (pp. 289-292).

2. Let D be a positive integer such that D ≡ 3 mod 4, and let R =

Z[1+
√
−D

2
], that is, R is the minimal subring of C containing Z and

1+
√
−D

2
.

(a) Prove that R = {a+ b1+
√
−D

2
: a, b ∈ Z}. You may skip details,

but it should be clear from your argument where the assumption

D ≡ 3 mod 4 is used (otherwise the result is simply not true).

(b) Assume that D = 3, 7 or 11. Prove that R is a Euclidean

domain.

3. Let R = Z[
√

5] = {a + b
√

5 : a, b ∈ Z}. Find an element of R

which is irreducible but not prime and deduce that R is not a unique

factorization domain (UFD).

Hint: Consider the equality 2 ·2 = (
√

5+1)(
√

5−1). In order to check

whether some element of R is irreducible it is convenient to use the

standard norm function N : R→ Z≥0 given by N(a+b
√

5) = |a2−5b2|
(note that N(uv) = N(u)N(v)).

4. Let R = Z + xQ[x], the subring of Q[x] consisting of polynomials

whose constant term is an integer.

(a) Show that the element αx, with α ∈ Q is NOT irreducible

in R. Then show that x cannot be written as a product of

irreducibles in R. Note that by Lecture 18, this implies that R

is not Noetherian.
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(b) Now prove directly that R is not Noetherian by showing that

I = xQ[x] is an ideal of R which is not finitely generated.

(c) Give an example of a non-Noetherian domain which is a UFD.

5. Let R be a commutative ring with 1.

(a) Let M be an ideal of R. Prove that the following conditions are

equivalent:

(i) M is the unique maximal ideal of R

(ii) every element of R \M is invertible.

Rings satisfying these equivalent conditions are called local.

(b) Let F be a field and F [[x]] the ring of power series over F .

Prove that F [[x]] is local.

(c) Now let R be arbitrary, let P be a prime ideal of R and S =

R \ P . Prove that the localization S−1R is local and explicitly

describe its unique maximal ideal.


