
Homework #2

Plan for next week: Sylow theorems (§ 4.5).

Problems, to be submitted by Thursday, September 12th

Note: Problems 1 and 2 below are relevant to the proof of Sylow

theorems that we will discuss in class next week.

Let R be a commutative ring with 1 and n ∈ N. Recall that GLn(R)

denotes the group of invertible n × n matrices over R and SLn(R)

the subgroup of GLn(R) consisting of matrices of determinant 1. In

general, a matrix A ∈Matn(R) lies in GLn(R) if and only if det(A) ∈
R×. In particular, if R is a field, then A ∈ GLn(R) if and only if

det(A) 6= 0.

1. Let F be a finite field of order q.

(a) Prove that GL2(F ) has order (q2− 1)(q2− q) = q(q− 1)2(q+ 1)

(b) State and prove the formula for the order of the groups GLn(F )

for n > 2.

(c) Prove that |SLn(F )| = |GLn(F )|
q−1 for any n ≥ 2.

Hint: To determine the order of GLn(F ) use the fact that a square

matrix over a field F is invertible if and only if its rows are linearly

independent.

2. Problem 10 on page 117 in Dummit and Foote.

3. An action of a group G on a set X is called transitive if it has just

one orbit, that is, for any x, y ∈ X there exists g ∈ G with g.x = y.

(a) Let (G,X, .) be a group action. Prove that if x, y ∈ X lie in

the same orbit, then their stabilizers StabG(x) and StabG(y)

are conjugate, that is, there exists g ∈ G with gStabG(x)g−1 =

StabG(y).

(b) Suppose that (G,X, .) is a transitive action and fix x ∈ X.

Prove that the kernel of this action is equal to
⋂
g∈G

gStabG(x)g−1

(c) Now suppose that G and X are both finite, (G,X, .) is a transi-

tive faithful action (where ‘faithful’ means the kernel is trivial)

and G is abelian. Prove that for any g ∈ G \ {1} the fixed set

FixX(g) is empty. Deduce that |X| = |G|. Hint: Use (b).
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4. Let C be the cube in R3 whose vertices have coordinates (±1,±1,±1).

Let G be the group of rotations of C, that is rotations in R3 which pre-

serve the cube (you may assume that G is a group without proof).

Let X be the set of 4 main diagonals of C (diagonals connecting the

opposite vertices). Note that G naturally acts on X and therefore we

have a homomorphism π : G → Sym(X) ∼= S4. Prove that π is an

isomorphism.

Hint: First show that G acts transitively on the 8 vertices of C. Then

show that the stabilizer of a fixed vertex had order ≥ 3. This implies

that |G| ≥ 24 = |S4|. Finally, show that π is injective (since |G| ≥ |S4|,
this would force π to be an isomorphism).

5. In Lecture 3 we sketched a proof of the fact that Aut(D8) ∼= D8.

Justify the following parts of the argument from class:

(i) |Aut(D8)| ≥ 8. Hint: first prove that |Inn(D8)| = 4 and think

how this helps to prove the desired inequality. Also think how

one can construct automorphisms of a group defined by gener-

ators and relations (since we have not formally defined presen-

tations by generators and relations yet, I am not expecting a

completely rigorous argument here).

(ii) Let S be the set of 4 reflections in D8. In class we argued

that S invariant under any automorphism of D8. Hence we

have a natural action of Aut(D8) on S and the corresponding

permutation representation T : Aut(D8) → Sym(S). Prove

that T is injective. Hint: let G be any group, and let S be an

Aut(G)-invariant subset of G. Find a simple-to-state sufficient

condition on S which guarantees that the the corresponding

permutation representation T : Aut(G)→ Sym(S) is injective

6. Let n ≥ 4 and f = (1, 2)(3, 4) ∈ Sn. Prove that |CSn(f)| = 8(n−4)!.

Then describe elements of this centralizer explicitly. Hint: What is

the conjugacy class of f?

7. (optional) Necklace-counting problem: Suppose that we want to

build a necklace using n beads of k possible colors (we do not have to

use all available colors). Two necklaces will be considered equivalent

if they can be obtained from each other using rotations or reflections.

What is the number of non-equivalent necklaces one can construct?

Approach using group actions. Let X be the set of all necklaces with

beads of k possible colors located at the vertices of a regular n-gon. The

dihedral group D2n has a natural action on X, and the orbits under

that action are precisely equivalence classes of necklaces in the above

sense. Use this interpretation and Burnside’s orbit-counting formula
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to prove that for n = 9 the number of non-equivalent necklaces is

k9 + 2k3 + 6k + 9k5

18
.

Then try to do the same for general n.


