
Homework # 11.

Plan for the remaining classes: Dimension theory of affine varieties,

localization of affine varieties and prime spectrum of a ring (parts of 15.2, 15.4

and 15.5). Good references on commutative algebra and algebraic geometry

freely available online are notes by J. Milne

http://www.jmilne.org/math/xnotes/CA.pdf

and

http://www.jmilne.org/math/CourseNotes/AG.pdf

Problems, to be submitted by Thu, December 5th.

Problem 1: DF, Problem 19 on p. 332. Make sure to read about the

Buchberger’s algorithm in 9.6 prior to solving this problem.

Problem 2: Let I be an ideal of Z[x], and suppose that I contains a monic

polynomial f(x) of degree n. Prove that I can be generated (as an ideal) by

at most n + 1 elements.

Problem 3: Let k be a field. An algebraic set V ⊆ kn is called irreducible

if V 6= ∅ and V cannot be written as the union V = V1 ∪ V2 where V1 and V2

are both algebraic, with V1 6= V and V2 6= V .

(a) (practice) Prove that V is irreducible if and only if its vanishing ideal

I(V ) is prime.

(b) We will prove that any algebraic set V can be uniquely written as

a union of finitely many algebraic subsets V = ∪ki=1Vi where Vi’s

are irreducible and do not contain each other. Such Vi’s are called

irreducible components of V . Assume that k is infinite, and let

V = Z(xy − y, x2z − z) ⊂ k3,

the set of common zeroes of xy − y and x2z − z. Find irreducible

components of V and their vanishing ideals. The answer will depend

on char(k).

Problem 4: Let k be an algebraically closed field. Prove that any nonzero

prime ideal of k[x, y] is equal to (f) for some irreducible f ∈ k[x, y] or

(x− a, y − b) for some a, b ∈ k. You may use the fact that k[x, y] has Krull

dimension 2.

1

http://www.jmilne.org/math/xnotes/CA.pdf
http://www.jmilne.org/math/CourseNotes/AG.pdf


In Problems 5 and 6 we identify the set Matn(k) of n × n matrices over a

field k with kn2
and thus can talk about Zariski topology on Matn(k).

Problem 5: Let k be an algebraically closed field.

(a) Prove that SLn(k) = {A ∈ Matn(k) : det(A) = 1} is Zariski closed

(that is, closed in Zariski topology) and find its dimension.

(b) Fix 1 ≤ d ≤ n, and let Rd(n, k) be the set of all matrices in Matn(k)

which have rank ≤ d. Prove that Rd(n, k) is Zariski closed, guess its

dimension and give a heuristic argument.

Problem 6: Let k be an arbitrary field. If Y is a subset of kn, we will

denote by Y the Zariski closure of Y , that is, the closure of Y in the Zariski

topology.

Now let A be a commutative subset of Matn(k), that is, ab = ba for all

a, b ∈ A. Prove that A is also commutative. Hint: First show that for any

a ∈ Matn(k), the centralizer of a in Matn(k) is Zariski closed. Then show

that ab = ba for all a ∈ A and b ∈ A and finally deduce the assertion of the

problem.

Problem 7: Again let k be an algebraically closed field. Let Y be a subset

of kn. Let k[Y ] = k[x1, . . . , xn]/I(Y ). As we will discuss in class on Tue, Nov

26, k[Y ] can be naturally identified with the ring of polynomial functions

from Y to k (with pointwise addition and multiplication). Let O(Y ) be the

set of all everywhere defined rational functions on Y , that is, all functions

f : Y → k for which there exist polynomials p, q ∈ k[x1, . . . , xn] s.t. q does

not vanish at any point of Y and f = p/q as a function on Y . Clearly,

k[Y ] ⊆ O(Y ).

(a) Prove that if Y is an algebraic set, then O(Y ) = k[Y ]. Hint: Use the

weak Nullstellensatz.

(b) Let Y = k1\{0}, the affine line with 0 removed. Prove that k[Y ] = k[x]

(polynomials in one variable) while O(Y ) = k[x, 1/x].

(c) Find an algebraic subset Z of k2 such that k[Z] ∼= k[x, 1/x]. How is Z

related to Y from part (b)? (No formal answer is expected).

(d) Find a non-algebraic subset W of k2 for which O(W ) = k[W ] ∼=
k[x1, x2].
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