
Homework #1

Plan for next week: Group actions (§ 4.1-4.3).

Problems, to be submitted by Thursday, September 5th

1. Let G be a group.

(a) Define φ : G → G by φ(g) = g2. Prove that φ is a homomor-

phism if and only if G is abelian.

(b) Assume that x2 = 1 for any x ∈ G. Prove that G is abelian.

2.

(a) Let G be a cyclic group of order n < ∞. Prove that if k ∈ Z,

then the mapping φ : G → G defined by φ(x) = xk is bijective

if and only if k is relatively prime to n.

(b) Let G be an arbitrary finite group of order n <∞. Prove that

if k ∈ Z is relatively prime to n, then the mapping φ : G → G

defined by φ(x) = xk is bijective. Hint: Use one of the

corollaries of Lagrange theorem.

3. Find the minimal n for which the symmetric group Sn contains an

element of order 15 (and explain why your n is indeed minimal). Note:

All you need to know about Sn for this problem is stated in Section 1.3

of DF (pp.29-32).

4. Prove that an element ā ∈ Zn is invertible if and only if gcd(a, n) = 1

where gcd is the greatest common divisor. You may use any standard

theorem about integers (e.g. unique factorization), but do not use any

theorems about Zn.

Hint: The forward direction is easy. For the opposite direction

either use the theorem about representation of gcd(a, n) as an integral

linear combination of a and n or, alternatively, show that the mapping

φn : Zn → Zn given by φn(x̄) = x̄ā is injective whenever gcd(a, n) = 1.

5. A group G is called finitely generated if there exists a finite subset

S of G such that 〈S〉 = G.

(a) Prove that every finite group is finitely generated.

(b) Let Q be the group of rational numbers with addition. Prove

that Q is not finitely generated.

(c) Prove that any finitely generated subgroup of Q is cyclic.
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6. Let G = D8, the dihedral group of order 8 (that is, the group of

isometries of a square). Prove that |[G,G]| = 2 and describe [G,G]

explicitly without computing every single commutator.

Index of a subgroup. If G is a group and H is a subgroup of G, the

index of H in G, denoted by [G : H], is defined to be the cardinality

of G/H, that is, the number of left cosets of H in G. It is not hard to

show that the sets G/H (the set of left cosets of H) and H \ G (the

set of right cosets of H) always have the same cardinality, so there is

no need to introduce “left index” and “right index”.

The full statement of Lagrange theorem asserts that if G is a finite

group and H is a subgroup of G, then [G : H] = |G|
|H| (typically one

applies not the full statement but its most useful consequence, namely,

that the order of H divides the order of G).

7. Let G be a group and let H and K be subgroups of G of finite index

(note that G is not assumed to be finite).

(a) Assume that H ⊆ K. Prove that [G : H] = [G : K][K : H]

(recall that [A : B] denotes the index of a subgroup B in a

group A).

(b) Let m = [G : H] and n = [G : K]. Prove that LCM(m,n) ≤
[G : H ∩K] ≤ mn (where LCM is the least common multiple).

Hint for (a): If A is a group and B a subgroup of A, a subset S

of A is called a left transversal of B in A if S contains precisely one

element from each left coset of B (an alternative name for a transversal

is a system of left coset representatives). Let {g1, . . . , gr} be a left

transversal of K in G and {k1, . . . , ks} a left transversal of H in K.

Prove that {gikj}1≤i≤r,1≤j≤s is a left transversal for H in G. Recall

that if B is a subgroup of a group G, then xB = yB ⇐⇒ x−1y ∈ B
for x, y ∈ G.

8. Let G be a group and H a subgroup of G.

(a) Prove directly from the definitions that the following two state-

ments are equivalent:

(i) gHg−1 = H for all g ∈ G
(ii) gHg−1 ⊆ H for all g ∈ G

(b) Give an example of a group G, a subgroup H of G and an

element g ∈ G such that gHg−1 is a proper subgroup of H.


