
Counting monic irreducible polynomials in Fp[x]

Let p be prime. For n ∈ N denote by an the number of monic irreducible

polynomials of degree n in Fp[x]. In this note we shall derive an explicit

formula for an and in particular prove that an > 0 for any n ∈ N. The latter,

combined with Theorem 24.2 proved in class, implies that for any prime p

and any n ∈ N there exists a field of order pn.

From now on we fix a prime p. Let f1, f2, . . . , be all monic irreducible poly-

nomials in Fp[x] listed in some order (we may assume that we first list all

monic irreducibles of degree 1, then degree 2 etc., but this is not essential).

The fact that there are infinitely many monic irreducibles can be proved us-

ing Euclid’s argument for the infiniteness of the set of prime numbers, but

once again we do not need to assume this in advance. For any i ∈ N let

di = deg(fi).

Definition: An infinite sequence of real numbers {xi} will be called finitary

if there exists N ∈ N such that xn = 0 for n > N .

Claim 1: Given n ∈ N let Sn be the set of finitary sequences {mi} where

each mi ∈ Z≥0 and
∑∞

i=1midi = n. Then |Sn| = pn.

Proof: We shall establish a bijection between Sn and the set Pn of all monic

polynomials of degree n in Fp[x]. It is clear that |Pn| = pn.

Define π : Sn → Pn by π({mi}) =
∏∞

i=1 f
mi
i (the product on the right-hand

side is in fact finite since the sequence {mi} is finitary). Note that π indeed

maps Sn to Pn since

deg(
∞∏
i=1

fmi
i ) =

∞∑
i=1

mi deg(fi) =
∞∑
i=1

midi = n.

Uniqueness of factorization in Fp[x] implies that π is bijective. �
Claim 2: The following equality of power series in Z[[t]] holds:

1

1− pt
=
∞∏
i=1

1

1− tdi
.

Remark: The product on the right-hand side is defined as limN→∞
∏N

i=1
1

1−tdi
,

and the limit is taken with respect to the following notion of convergence on

Z[[t]]:
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Given u =
∑∞

i=0 uit
i ∈ Z[[t]] and a sequence {uk} in Z[[t]] where uk =∑∞

i=0 ui,kt
i ∈ Z[[t]], we say that uk → u if for any i ∈ N there exists K(i)

such that ui,k = ui for any k > K(i).

Proof: Note that
∏∞

i=1
1

1−tdi
=
∏∞

i=1(
∑∞

mi=0 t
dimi). Multiplying this prod-

uct out (and using the above notion of the limit) we get
∏∞

i=1
1

1−tdi
=∑

(m1,m2,...) t
∑∞

i=1 midi where the sum is over all finitary sequences {mi}. By

Claim 1, for each n ∈ N there are precisely pn finitary sequences of non-

negative integers with
∑∞

i=1midi = n. Thus,
∏∞

i=1
1

1−tdi
=
∑∞

n=0 p
ntn = 1

1−pt
.

�
Now recall that an denotes the number of monic irreducible polynomials of

degree n, and thus an = |{i ∈ N : di = n}|. Thus, the equality in Claim 2

can be rewritten as
1

1− pt
=

∞∏
m=1

( 1

1− tm
)am

.

Taking log of both sides, we get

log
( 1

1− pt

)
=

∞∑
m=1

am log
( 1

1− tm
)
.

Since log( 1
1−x

) =
∑∞

j=1
xj

j
, we get

∞∑
n=1

pn

n
tn =

∞∑
m=1

am

( ∞∑
j=1

tjm

j

)
The coefficient of tn on the left-hand side is equal to pn

n
, and the coefficient of

tn on the right-hand side is equal to
∑

n=mj
am

j
=
∑

n=mj
mam

mj
=
∑

m|n
mam

n
.

Thus, we must have ∑
m|n

mam = pn for any n ∈ N. (∗ ∗ ∗)

Formula (***) already implies that an > 0 for any n. Indeed, suppose not and

there exists n ∈ N such that an = 0. Since am ≤ pm for any m and all proper

divisors of n do not exceed n/2, we get pn ≤
∑[n/2]

m=1mp
m < [n/2]p[n/2]+1

p−1
≤

np[n/2]. Therefore, pn−[n/2] < n, which is easily seen to be impossible. How-

ever, one can go further and deduce a simple formula for {an} from (***)

using Möbius inversion.

Möbius inversion: Let V be the set of all functions from N to Z (in fact

Z can be replaced by any commutative ring with 1), and define a binary

operation ∗ on V by setting

(f ∗ g)(n) =
∑
d|n

f(d)g(n/d).
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It is clear that ∗ is commutative, and it is not hard to check that ∗ is also

associative. The set V does not become a group with this operation (even if

we remove the zero function); however, there is an identity element ε : N→ R

defined by ε(1) = 1 and ε(n) = 0 for n > 1. It turns out that the constant

function 1 (defined by 1(n) = 1 for any n) has inverse with respect to this

operation, called the Möbius function. It is denoted by µ and defined as

follows:

µ(n) =


1 if n = 1

(−1)r if n = p1 . . . pr where p1, . . . , pr are distinct primes
0 if p2 | n for some prime p.

Now let us go back to our computation. Consider the functions f and g

defined by f(n) = pn and g(n) = nan for n ∈ N. Formula (***) can now be

rewritten as equality f = g ∗ 1 in V . Multiplying both sides by the Möbius

function µ and using the fact that 1 ∗ µ = ε and ε is the identity element

with respect to ∗, we get f ∗ µ = (g ∗ 1) ∗ µ = g ∗ (1 ∗ µ) = g ∗ ε = g. Thus,

for any n ∈ N we get g(n) = (f ∗ µ)(n) =
∑

d|n f(d)µ(n/d), whence

an =
1

n

∑
d|n

pdµ(n/d).

For instance, if n is prime, an = 1
n
(pn − p). If n is not prime, the expression

is more complicated, but for any small n computation of an is very quick.
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