Homework #6.

Plan for next week: Free groups (6.3)

Problems, to be submitted by Thursday, October, 13th

- 1. (a) Classify all abelian groups of order $360 = 2^3 \cdot 3^2 \cdot 5$ up to isomorphism. For each isomorphism type, state the corresponding elementary divisors form and invariant factors form.
- (b) Let $n \in \mathbb{N}$, and decompose n as a product of primes: $n = p_1^{\alpha_1} \dots p_k^{\alpha_k}$. Find the number of non-isomorphic abelian groups of order n. Express your answer in terms of the partition function.
- **2.** Let G be a finite abelian group. Prove that G is cyclic if and only if G does not contain a subgroup isomorphic to $B \oplus B$ for some non-trivial group B.
- **3.** Let G be an abelian group (not necessarily finitely generated), and let Tor(G) be the set of elements of finite order in G. Recall that Tor(G) is a subgroup of G (since G is abelian), called the torsion subgroup of G.
- (a) Prove that the quotient group G/Tor(G) is torsion-free (a group is called torsion-free if it does not have non-identity elements of finite order).
- (b) For each prime p let $Tor_p(G)$ be the set of elements of order p^k (with $k \geq 0$) in G. Prove that each $Tor_p(G)$ is a subgroup of Tor(G) and that Tor(G) is a direct sum of these subgroups where p runs over all primes.
- **4.** Let Ω be a countable set (for simplicity you may assume that $\Omega = \mathbb{Z}$, the integers). Let $S(\Omega)$ be the group of all permutations of Ω . A permutation $\sigma \in S(\Omega)$ is called *finitary* if it moves only a finite number of points, that is, the set $\{i \in \Omega : \sigma(i) \neq i\}$ is finite. It is easy to see that finitary permutations form a subgroup of $S(\Omega)$ which will be denoted by $S_{fin}(\Omega)$. Finally, let $A_{fin}(\Omega)$ be the subgroup of even permutations in $S_{fin}(\Omega)$ (note that it makes sense to talk about even permutations in $S_{fin}(\Omega)$, but not in $S(\Omega)$).
- (a) Prove that the group $A_{fin}(\Omega)$ is simple and that $A_{fin}(\Omega)$ is a subgroup of index two in $S_{fin}(\Omega)$. **Hint:** To prove the first assertion solve problem 5 in [DF, page 151].
- (b) Prove that $A_{fin}(\Omega)$ and $S_{fin}(\Omega)$ are both normal in $S(\Omega)$.
- (c) Prove that neither of the groups $S(\Omega)$ and $S_{fin}(\Omega)$ is finitely generated. **Hint:** The two groups are not finitely generated for completely different

reasons.

(d) Construct a finitely generated subgroup G of $S(\Omega)$ which contains $S_{fin}(\Omega)$. **Note:** This example shows that a subgroup of a finitely generated group does not have to be finitely generated.