Homework #1, to be submitted by Thursday, September, 1st

- **1.** Let A be a set and let $f: A \to A$ and $g: A \to A$ be mappings such that $f \circ g = id_A$ (where id_A is the identity mapping on A).
- (a) Prove that f is surjective and g is injective
- (b) Show by example that f need not be injective and g need not be surjective
- **2.** (a) Let G be a group, and define the relation \sim on G: $x \sim y$ if y is conjugate to x in G, that is, there exists $g \in G$ such that $y = gxg^{-1}$. Prove that \sim is an equivalence relation.
- (b) Let G be a group. An equivalence relation \sim on G is called a **congruence** if for any $a, b, c, d \in G$ such that $a \sim b$ and $c \sim d$ we have $ac \sim bd$. Now let H be a subgroup of G and define the relation \sim_H on G by

$$a \sim_H b \iff a^{-1}b \in H.$$

Prove that \sim_H is a congruence if and only if H is normal in G.

- **3.** Let G be a group. (a) Define $\varphi: G \to G$ by $\varphi(g) = g^2$. Prove that φ is a homomorphism if and only if G is abelian.
- (b) Assume that $x^2 = 1$ for any $x \in G$. Prove that G is abelian.
- **4.** Find the minimal n for which the symmetric group S_n contains an element of order 15 (and explain why your n is indeed minimal). *Note:* All you need to know about S_n for this problem is stated in Section 1.3 of DF (pp.29-32).
- **5.** Prove that an element $\bar{a} \in \mathbb{Z}_n$ is invertible if and only if gcd(a, n) = 1 where gcd is the greatest common divisor. You may use any standard theorem about integers (e.g. unique factorization), but do not use any theorems about \mathbb{Z}_n .

Hint: The forward direction is easy. For the opposite direction either use the theorem about representation of gcd(a, n) as an integral linear combination of a and n or, alternatively, show that the mapping $\varphi_n : \mathbb{Z}_n \to \mathbb{Z}_n$ given by $\varphi_n(\bar{x}) = \bar{x}\bar{a}$ is injective whenever gcd(a, n) = 1.

- **6.** (a) Prove that every finite group is finitely generated.
- (b) Let $\mathbb Q$ be the group of rational numbers with addition. Prove that $\mathbb Q$ is not finitely generated.
- (c) Prove that any finitely generated subgroup of \mathbb{Q} is cyclic.

7. Let G be a group and H a subgroup of G. Let G/H (resp. $H \setminus G$) be the set of left (resp. right) cosets of H in G. Construct an explicit bijection between G/H and $H \setminus G$. Remark: This result explains why we can talk about the index [G:H] of a subgroup H of G instead of talking about left and right indices.