29. Affine algebraic sets, geometric interpretation of HBT and Nullstellensatz

29.1. Affine algebraic sets. Let k be a field. For $n \in \mathbb{N}$ let k^n be the *n*-dimensional affine space over k. We shall "think" of elements of k^n as points, not vectors. Any $f \in k[x_1, \ldots, x_n]$ naturally defines a function on k^n .

Definition. Let S be a subset of $k[x_1, \ldots, x_n]$. The set

$$Z(S) = \{(a_1, \dots, a_n) \in k^n : f(a_1, \dots, a_n) = 0 \text{ for any } f \in S\}$$

is called the <u>zero set</u> of S.

Remark: The zero set of $S \subset k[x_1, \ldots, x_n]$ is often called the *vanishing* set of S.

Example:

- (i) $Z(\{1\}) = \emptyset$
- (ii) $Z(\{0\}) = k^n$
- (iii) Let n = 4 and $S = \{x_2^2 x_1^2, x_3 x_1^2\}$. Then $Z(S) = \{(a_1, \pm a_1, a_1^2, a_4)\}$ is a union of two parabolic cylinders.

Definition. A subset $V \subseteq k^n$ is called <u>algebraic</u> if V = Z(S) for some (possibly infinite) set of polynomials S.

If Y is any subset of k^n , we can consider

$$I(Y) = \{ f \in k[x_1, \dots, x_n] : f(a_1, \dots, a_n) = 0 \text{ for all } (a_1, \dots, a_n) \in V \}.$$

Clearly, I(Y) is an ideal of Y called the vanishing ideal of Y.

Lemma 29.0. The maps $Y \mapsto I(Y)$ and $S \mapsto Z(S)$ are inclusion-reversing, that is,

- (a) If $Y_1 \subseteq Y_2 \subseteq k^n$, then $I(Y_1) \supseteq I(Y_2)$;
- (b) If $S_1 \subseteq S_2 \subseteq k[x_1, \ldots, x_n]$, then $Z(S_1) \supseteq Z(S_2)$.

Proof. Obvious.

Lemma 29.1. Let S be a subset of $k[x_1, \ldots, x_n]$ and Y a subset of k^n . Then

- (a) $I(Z(S)) \supseteq S;$
- (b) $Z(I(Y)) \supseteq Y;$
- (c) Z(S) = Z(J) where J = (S) is the ideal generated by S;
- (d) Y is algebraic $\iff Z(I(Y)) = Y$.

Proof. (a), (b), (c) and the " \Leftarrow " part of (d) are clear. Let us prove the " \Rightarrow " part of (d). Suppose that Y is algebraic, so Y = Z(S) for some S. Then $I(Y) = I(Z(S) \supseteq S$ by (a). By Lemma 29.0(b) we have $Z(I(Y)) \subseteq Z(S) = Y$. The opposite inclusion $Z(I(Y)) \supseteq Y$ holds by (b).

29.2. Geometric interpretation of HBT. Let $V \subseteq k[x_1, \ldots, x_n]$ be an algebraic subset. By HBT $I(V) = (f_1, \ldots, f_n)$ for some f_1, \ldots, f_n . By Lemma 29.1(c)(d) we have

$$V = Z(I(V)) = Z((f_1, \dots, f_n)) = Z(\{f_1, \dots, f_n\})$$

Thus, V is the zero set of a finite family of polynomials:

Corollary 29.2. Every algebraic set in k^n is the set of common zeroes of a finite family of polynomials.

Corollary 29.3. Every descending chain of algebraic subsets of k^n must stabilize after finitely many steps.

Proof. Suppose we have a chain $V_1 \supset V_2 \supset \ldots$ where each V_i is algebraic and all inclusions are strict. Then $I(V_1) \subseteq I(V_2) \subseteq \ldots$, so $I(V_m) = I(V_{m+1})$ for some *m* since the ring $k[x_1, \ldots, x_n]$ is Noetherian.

But then $Z(I(V_m)) = Z(I(V_{m+1}))$, and thus $V_m = V_{m+1}$ by Lemma 29.1(d) contrary to our assumption.

29.3. Radical ideals and Nullstellensatz. Notice that we established an inclusion-reversing correspondence

(29.1) {algebraic subsets of k^n } \longleftrightarrow ideals of $k[x_1, \dots, x_n]$

$$V \mapsto I(V)$$

 $Z(J) \leftarrow J$

We already saw that Z(I(V)) = V if V is algebraic. Is it true that I(Z(J)) = J for any ideal J? Positive answer would have implied that the above correspondence is bijective, but the answer turns out to be 'No':

Example: 1. Let k be any field, n = 1 and $x = x_1$. Choose any $a \in k$ and let $J = ((x - a)^2)$. Then $Z(J) = \{a\}$, but $I(Z(J)) = I(\{a\}) = (x - a)$ is strictly larger than J.

2. Once again let n = 1, $x = x_1$, and suppose that k is not algebraically closed. Then there exists a non-constant polynomial $f(x) \in k[x]$ without any roots. Let J = (f(x)). Then $Z(J) = \emptyset$, and so $I(Z(J)) = k \neq J$.

It turns out that if k is algebraically closed, then Example 1 illustrates "the only reason" why the equality Z(I(J)) = J may fail to be true. In this case

we can make the correspondence in (29.1) bijective by restricting from all ideals to radical ideals defined below.

Definition. Let R be a commutative ring and J an ideal of R. The set $\sqrt{J} := \{r \in R : r^n \in J \text{ for some } n \in \mathbb{N}\}$ is called the <u>radical of J</u>.

It is easy to show that \sqrt{J} is also an ideal. Also note that $J \subseteq \sqrt{J}$ and $\sqrt{\sqrt{J}} = \sqrt{J}$.

Definition. An ideal J of a ring R is called <u>radical</u> if $\sqrt{J} = J$.

It is easy to see that J is radical $\iff R/J$ has no nilpotent elements.

Theorem (Hilbert's Nullstellensatz). If k is an algebraically closed field and J is an ideal of $k[x_1, \ldots, x_n]$, then $I(Z(J)) = \sqrt{J}$. In particular,

$$I(Z(J)) = \sqrt{J} \iff J \text{ is radical.}$$

Hopefully we will have time to prove Nullstellensatz next semester.

Corollary 29.4. If k is an algebraically closed field, (29.1) yields a <u>bijective</u> correspondence between algebraic subsets of k^n and radical ideals of $k[x_1, \ldots, x_n]$.

Note that every prime ideal is radical. It is not hard to show (New Year Homework, Problem#3) that under the above bijection prime ideals correspond to irreducible algebraic subsets.

Definition. An algebraic subset $V \subseteq k^n$ is called <u>irreducible</u> if $V \neq \emptyset$ and V cannot be written as the union $V = V_1 \cup V_2$ where V_1 and V_2 are both algebraic, with $V_1 \neq V$ and $V_2 \neq V$.

Finally, Hilbert's Nullstellensatz easily implies that maximal ideals of $k[x_1, \ldots, x_n]$ are in bijective correspondence with points in k^n (once again, assuming that k is algebraically closed) – a point (a_1, \ldots, a_n) corresponds to the ideal $(x_1 - a_1, \ldots, x_n - a_n)$. It is easy to see that each of those ideals is maximal; the non-trivial part which requires Nullstellensatz is that there are no other maximal ideals.