
29. Affine algebraic sets, geometric interpretation of HBT

and Nullstellensatz

29.1. Affine algebraic sets. Let k be a field. For n ∈ N let kn be the
n-dimensional affine space over k. We shall “think” of elements of kn as
points, not vectors. Any f ∈ k[x1, . . . , xn] naturally defines a function on
kn.

Definition. Let S be a subset of k[x1, . . . , xn]. The set

Z(S) = {(a1, . . . , an) ∈ kn : f(a1, . . . , an) = 0 for any f ∈ S}

is called the zero set of S.

Remark: The zero set of S ⊂ k[x1, . . . , xn] is often called the vanishing
set of S.
Example:

(i) Z({1}) = ∅
(ii) Z({0}) = kn

(iii) Let n = 4 and S = {x2
2−x2

1, x3−x2
1}. Then Z(S) = {(a1,±a1, a

2
1, a4)}

is a union of two parabolic cylinders.

Definition. A subset V ⊆ kn is called algebraic if V = Z(S) for some
(possibly infinite) set of polynomials S.

If Y is any subset of kn, we can consider

I(Y ) = {f ∈ k[x1, . . . , xn] : f(a1, . . . , an) = 0 for all (a1, . . . , an) ∈ V }.

Clearly, I(Y ) is an ideal of Y called the vanishing ideal of Y .

Lemma 29.0. The maps Y 7→ I(Y ) and S 7→ Z(S) are inclusion-reversing,
that is,

(a) If Y1 ⊆ Y2 ⊆ kn, then I(Y1) ⊇ I(Y2);
(b) If S1 ⊆ S2 ⊆ k[x1, . . . , xn], then Z(S1) ⊇ Z(S2).

Proof. Obvious. �

Lemma 29.1. Let S be a subset of k[x1, . . . , xn] and Y a subset of kn. Then

(a) I(Z(S)) ⊇ S;
(b) Z(I(Y )) ⊇ Y ;
(c) Z(S) = Z(J) where J = (S) is the ideal generated by S;
(d) Y is algebraic ⇐⇒ Z(I(Y )) = Y .
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Proof. (a), (b), (c) and the “⇐” part of (d) are clear. Let us prove the “⇒”
part of (d). Suppose that Y is algebraic, so Y = Z(S) for some S. Then
I(Y ) = I(Z(S) ⊇ S by (a). By Lemma 29.0(b) we have Z(I(Y )) ⊆ Z(S) =
Y . The opposite inclusion Z(I(Y )) ⊇ Y holds by (b). �

29.2. Geometric interpretation of HBT. Let V ⊆ k[x1, . . . , xn] be an
algebraic subset. By HBT I(V ) = (f1, . . . , fn) for some f1, . . . , fn. By
Lemma 29.1(c)(d) we have

V = Z(I(V )) = Z((f1, . . . , fn)) = Z({f1, . . . , fn})

Thus, V is the zero set of a finite family of polynomials:

Corollary 29.2. Every algebraic set in kn is the set of common zeroes of a
finite family of polynomials.

Corollary 29.3. Every descending chain of algebraic subsets of kn must
stabilize after finitely many steps.

Proof. Suppose we have a chain V1 ⊃ V2 ⊃ . . . where each Vi is algebraic
and all inclusions are strict. Then I(V1) ⊆ I(V2) ⊆ . . ., so I(Vm) = I(Vm+1)
for some m since the ring k[x1, . . . , xn] is Noetherian.
But then Z(I(Vm)) = Z(I(Vm+1)), and thus Vm = Vm+1 by Lemma 29.1(d)
contrary to our assumption. �

29.3. Radical ideals and Nullstellensatz. Notice that we established an
inclusion-reversing correspondence

(29.1) {algebraic subsets of kn} ←→ ideals of k[x1, . . . , xn]

V 7→ I(V )

Z(J) ← J

We already saw that Z(I(V )) = V if V is algebraic. Is it true that I(Z(J)) =
J for any ideal J? Positive answer would have implied that the above
correspondence is bijective, but the answer turns out to be ‘No’:
Example: 1. Let k be any field, n = 1 and x = x1. Choose any a ∈ k and
let J = ((x − a)2). Then Z(J) = {a}, but I(Z(J)) = I({a}) = (x − a) is
strictly larger than J .
2. Once again let n = 1, x = x1, and suppose that k is not algebraically
closed. Then there exists a non-constant polynomial f(x) ∈ k[x] without
any roots. Let J = (f(x)). Then Z(J) = ∅, and so I(Z(J)) = k 6= J .

It turns out that if k is algebraically closed, then Example 1 illustrates “the
only reason” why the equality Z(I(J)) = J may fail to be true. In this case
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we can make the correspondence in (29.1) bijective by restricting from all
ideals to radical ideals defined below.

Definition. Let R be a commutative ring and J an ideal of R. The set√
J := {r ∈ R : rn ∈ J for some n ∈ N} is called the radical of J .

It is easy to show that
√

J is also an ideal. Also note that J ⊆
√

J and√√
J =
√

J .

Definition. An ideal J of a ring R is called radical if
√

J = J .

It is easy to see that J is radical ⇐⇒ R/J has no nilpotent elements.

Theorem (Hilbert’s Nullstellensatz). If k is an algebraically closed field and
J is an ideal of k[x1, . . . , xn], then I(Z(J)) =

√
J . In particular,

I(Z(J)) =
√

J ⇐⇒ J is radical.

Hopefully we will have time to prove Nullstellensatz next semester.

Corollary 29.4. If k is an algebraically closed field, (29.1) yields a bijective
correspondence between algebraic subsets of kn and radical ideals of k[x1, . . . , xn].

Note that every prime ideal is radical. It is not hard to show (New Year
Homework, Problem#3) that under the above bijection prime ideals corre-
spond to irreducible algebraic subsets.

Definition. An algebraic subset V ⊆ kn is called irreducible if V 6= ∅ and
V cannot be written as the union V = V1 ∪ V2 where V1 and V2 are both
algebraic, with V1 6= V and V2 6= V .

Finally, Hilbert’s Nullstellensatz easily implies that maximal ideals of k[x1, . . . , xn]
are in bijective correspondence with points in kn (once again, assuming that
k is algebraically closed) – a point (a1, . . . , an) corresponds to the ideal
(x1− a1, . . . , xn− an). It is easy to see that each of those ideals is maximal;
the non-trivial part which requires Nullstellensatz is that there are no other
maximal ideals.


