
27. l-adic integers (continued)

Recall (last time): If A = Z, l ≥ 2 an integer and I = (l), the associated
completion ÂI is denoted by Ẑl and called the ring of l-adic integers.

Theorem 27.1. The following hold:

(a) If p is a prime, then Ẑp is a domain and also a local ring (which is
not a field)

(b) If l = pα is a prime power, then Ẑp ∼= Ẑl
(c) In general, if l = pα1

1 . . . pαkk where p1, . . . , pk are distinct primes,
then

Ẑl ∼= Ẑp1 × . . .× Ẑpk .

Remark: (c) implies that Ẑl is not a domain if l is not a prime power.

Proof. (a) Let R = Ẑp. By Claim 26.1(2) any a ∈ R can be uniquely written
as a = a0 + a1p+ a2p

2 + . . . where 0 ≤ ai ≤ p− 1.
Let M = pR. Note that a ∈ M ⇐⇒ a0 = 0. Clearly, M is an ideal of
R and M 6= R. We will show that any element of R \M is a unit. This
will imply that R is a local ring with maximal ideal M (and R is not a field
since M 6= 0).
Take a ∈ R \M , so that a0 6= 0.
Case 1: a0 = 1. In this case a = 1 + pb for some b ∈ R. Direct verification
shows that the element 1− pb+ (pb)2 − (pb)3 + . . . is the inverse of a. Note
that this power series is convergent by Claim 26.1(1).
Case 2: 1 < a0 < p. Choose k ∈ Z such that a0k = 1 + pc for some c ∈ Z.
We know that a = a0 + pb, so ka = ka0 + pkb = 1 + p(c + kb) is a unit by
case 1. Since ka is a unit, a must also be a unit.
It remains to prove that R is a domain. Suppose not and there exist nonzero
a, b ∈ R such that ab = 0. We know that a = amp

m + am+1p
m+1 + . . . and

b = bkp
k + bk+1p

k+1 + . . . for some m, k ∈ Z≥0 where am, bk 6= 0. But then

0 = ab = pm+k(am + pam+1 + . . .)(bk + pbk+1 + . . .)

As we just proved the elements am + pam+1 + . . . and bk + pbk+1 + . . . are
both units, so the above equality implies that pm+k = 0 which is clearly
false. This finishes the proof of (a).

(b) is a special case of the following general result:
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Fact. Let A be a ring, I an ideal of A with
⋂
n
In = {0}, and J = Im for

some m ∈ N. Then the I-adic and J-adic metrics on A induce the same
topology, and thus ÂI ∼= ÂJ .

This claim, in turn, easily follows from the definition of I-adic topology.

Finally, part (c) is proved using the Chinese Remainder Theorem. In order
to give a rigorous argument we need the notion of an inverse limit. �

27.1. Inverse limits (easy case). Suppose that we are given a sequence
of rings A1, A2, . . . and homomorphisms πn : An+1 → An for each n ∈ N.
We will say that

A1
π1←− A2

π2←− A3
π3←− . . .

is an inverse system of rings. The inverse limit lim←−
n∈N

An is defined to be the

following subset o
∞∏
n=1

An :

lim←−
n∈N

An = {(a1, a2, . . .) ∈
∏

An : πn(an+1) = an for all n ∈ N}.

It is easy to see that lim←−
n∈N

An is in fact a subring of
∏
An.

Theorem 27.2 (Connection between inverse limits and completions). Let
A be a ring and I an ideal of A with

⋂
n∈N

In = {0}. Consider the inverse

system of rings
A/I

π1←− A/I2 π2←− . . .
where each πi is a natural surjection. Then lim←−

n∈N
A/In ∼= ÂI as rings.

Proof (sketch). Take x ∈ lim←−A/I
n. By definition x = (a1 + I, a2 + I2, . . .)

where πn(an+1+In+1) = an+In for each n. On the other hand, by definition
of natural projections πn(an+1 + In+1) = an+1 + In. Thus, an+1 − an ∈ In.

For any m > n we have am − an =
∑m−1

i=n (ai+1 − ai) ∈ In, which implies
that the sequence {an} is Cauchy in the I-adic metric. Define the mapping
Φ : lim←−A/I

n → ÂI by

(a1 + I, a2 + I2, . . .) 7→ [an]

where as before [an] is the equivalence class of {an}.
One then has to show that Φ is well defined, bijective and preserves ring
operations. �

Example: 1. Let R be a commutative ring. Then R[[x]] ∼= lim←−
n∈N

R[x]/(xn).

2. Let l ≥ 2 be an integer. Then Ẑl ∼= lim←−
n∈N

Z/lnZ.
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Proof of Theorem 27.1(c). Let l = pα1
1 . . . pαkk . By Theorem 27.2 Ẑl ∼=

lim←−
n∈N

Z/lnZ. Since ln = pα1n
1 . . . pαknk , by the Chinese Remainder Theorem

Z/lnZ ∼= Z/pα1n
1 Z× . . .× Z/pαknk Z.

Hence

Ẑl ∼= lim←−
n∈N

(Z/pα1n
1 Z× . . .× Z/pαknk Z) ∼=

lim←−
n∈N

Z/pα1n
1 Z× . . .× lim←−

n∈N
Z/pαknk Z ∼= Ẑpα1

1
× . . .× Ẑpαkk

∼= Ẑp1 × . . .× Ẑpk

where the last isomorphism holds by Theorem 27.1(b) and the second iso-
morphism is left as an exercise. �

Finally, we define the field of p-adic numbers. If p is prime, then as we
proved Ẑp is a domain, and we can consider its field of fractions Qp, called
the field of p-adic numbers.
The analogue of Claim 26.1(2) for p-adic numbers asserts that any element

of Qp can be uniquely written as
∞∑

n=−N
anp

n where 0 ≤ an ≤ p − 1 and

N ∈ Z.

Remark: In the literature p-adic integers are most commonly denoted just
by Zp. We used the more complex notation Ẑp to avoid confusion with the
use of Zp for the finite field Z/pZ (or cyclic group of order p).


