
26. Completions of rings

26.1. Norms on rings. Let A be a ring and suppose that we have a func-
tion ‖ ‖ : A→ R≥0, called a norm, such that

(1) ‖x‖ = 0 ⇐⇒ x = 0
(2) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ A
(3) ‖xy‖ ≤ ‖x‖ · ‖y‖ for all x, y ∈ A

Define the metric d on A associated with the norm ‖ ‖ by setting d(x, y) =
‖x−y‖. This is indeed a metric by conditions (1) and (2). With this metric
A becomes a topological ring, that is, A is a topological space and the
mappings (x, y) 7→ x+ y and (x, y) 7→ x · y from A×A to A are continuous.
Let Â be the ring-theoretic completion of A with respect to d. As a set Â
is just the usual topological completion of A, that is,

Â = {equivalence classes of Cauchy sequences of elements ofA}

Ring operations on Â are defined by setting

[xn] + [yn] = [xn + yn] and [xn] · [yn] = [xn · yn]

where [xn] is the equivalence class of the sequence {xn}.
Conditions (2) and (3) in the definition of a norm ensure that addition and
multiplication on Â are well defined and continuous.

Remark: (a) There is a natural embedding ι : A → Â where ι(x) is the
class of the constant sequence x, x, . . .. From now on we shall identify A

with ι(A).
(b) The norm ‖ ‖ can be extended from A to Â by setting

‖ [xn] ‖ = lim
n→∞

‖xn‖.

It is easy to see that this extension still satisfies the axioms (1)-(3).
Example: Let A = Q (rationals) and ‖x‖ = |x| (the absolute value of x).
Then Â = R (reals).

26.2. Completion with respect to I-adic metric. Let A be a ring with
1 and fix an ideal I of A. Recall that for each n ∈ N we have

In = {finite sums of elements of the form i1 . . . in : ik ∈ I}.

We also set I0 = A. Assume that⋂
n∈N

In = {0}.
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Then given 0 6= x ∈ A, there exists unique n ∈ Z≥0 such that x ∈ In \ In+1.
This n will be denoted by deg(x) and called the degree of x. We also set
deg(0) =∞. Define

‖x‖ = 2− deg(x)

We claim that ‖ ‖ is a norm on A. Indeed, since each In is closed under
addition and In+m = In · Im we have

(a) deg(x+ y) ≥ min{deg(x),deg(y)} (b) deg(xy) ≥ deg(x) + deg(y)

These translate into “opposite” inequalities for ‖ ‖

(a’) ‖x+ y‖ ≤ max{‖x‖, ‖y‖} (b’) ‖xy‖ ≤ ‖x‖ · ‖y‖

Inequality (a’) is called the ultrametric triangle inequality and is stronger
than the usual triangle inequality ‖x+ y‖ ≤ ‖x‖+ ‖y‖.
Conditions (a’) and (b’) and the fact that each nonzero element of A has fi-
nite degree imply that ‖ ‖ is indeed a norm. It is called the I-adic norm on A.
The associated metric and topology are called the I-adic metric (resp. topol-
ogy).

Definition. The completion of A with respect to the I-adic norm is called
the I-adic completion of A and will be denoted by ÂI .

Example 1: Let R be a commutative ring, A = R[x] and I = (x). We
claim that

ÂI
∼= R[[x]] (power series over R).

Proof (sketch). Consider two arbitrary elements of R[x]

f(x) = r0 + . . .+ rnx
n and g(x) = s0 + . . .+ snx

n.

Then

‖f − g‖ = 2−m where m is the minimal integer for which rm 6= sm (∗)

Define the map

Φ : {Cauchy sequences in R[x]} → R[[x]]

as follows:
Let f1, f2, . . . be a Cauchy sequence in R[x]. Let fik be the coefficient of xk

in fi. By (*) for any k ∈ Z≥0 the sequence {fik}∞i=1 is eventually constant,
that is, there exists N = N(k) ∈ N and rk ∈ R such that fik = rk for i > N .
Define

Φ([f1, f2, . . .]) = r0 + r1x+ . . .

Straightforward verification shows that Φ is well defined and establishes an
isomorphism between ÂI and R[[x]]. �
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Example 2: Let A = Z, l an integer ≥ 2 and I = (l). Then ÂI is called
the ring of l-adic integers and denoted by Ẑl.

Claim 26.1. The following hold:

(1) For any sequence of integers a0, a1, . . . the series a0 +a1l+a2l
2 + . . .

converges in Ẑl.

(2) Any x ∈ Ẑl can be uniquely written as x =
∞∑

n=0
anl

n where each

an ∈ Z and 0 ≤ an ≤ l − 1.

Proof (sketch). (1) is easy. For instance, it follows from the fact that in

any metric space satisfying ultrametric triangle inequality a series
∞∑

n=1
cn

converges if and only if lim
n→∞

cn = 0.

(2) can be proved similarly to example 1. A key fact one needs to use is
that any non-negative integer m can be uniquely written as a (finite) sum

m =
k∑

n=0
anl

n with 0 ≤ an ≤ l − 1 (this is just the expansion of m to the

base l). �

An “informal consequence” of Claim 26.1(2) is that as a set Ẑl can be iden-
tified with “power series in l.” Addition and multiplication on Ẑl can be
defined using the usual “carry-over” algorithm for adding and multiplying
integers written to the base l.


