26. Completions of rings

26.1. Norms on rings. Let A be a ring and suppose that we have a function $\| \| : A \to \mathbb{R}_{>0}$, called a <u>norm</u>, such that

- (1) $||x|| = 0 \iff x = 0$
- (2) $||x + y|| \le ||x|| + ||y||$ for all $x, y \in A$
- (3) $||xy|| \le ||x|| \cdot ||y||$ for all $x, y \in A$

Define the metric d on A associated with the norm $\| \|$ by setting $d(x, y) = \|x - y\|$. This is indeed a metric by conditions (1) and (2). With this metric A becomes a topological ring, that is, A is a topological space and the mappings $(x, y) \mapsto x + y$ and $(x, y) \mapsto x \cdot y$ from $A \times A$ to A are continuous. Let \widehat{A} be the ring-theoretic completion of A with respect to d. As a set \widehat{A} is just the usual topological completion of A, that is,

 $\widehat{A} = \{ \text{equivalence classes of Cauchy sequences of elements of } A \}$

Ring operations on \widehat{A} are defined by setting

 $[x_n] + [y_n] = [x_n + y_n]$ and $[x_n] \cdot [y_n] = [x_n \cdot y_n]$

where $[x_n]$ is the equivalence class of the sequence $\{x_n\}$.

Conditions (2) and (3) in the definition of a norm ensure that addition and multiplication on \widehat{A} are well defined and continuous.

Remark: (a) There is a natural embedding $\iota : A \to \widehat{A}$ where $\iota(x)$ is the class of the constant sequence x, x, \ldots From now on we shall identify A with $\iota(A)$.

(b) The norm $\| \|$ can be extended from A to \hat{A} by setting

$$\|[x_n]\| = \lim_{n \to \infty} \|x_n\|.$$

It is easy to see that this extension still satisfies the axioms (1)-(3). **Example:** Let $A = \mathbb{Q}$ (rationals) and ||x|| = |x| (the absolute value of x). Then $\widehat{A} = \mathbb{R}$ (reals).

26.2. Completion with respect to *I*-adic metric. Let *A* be a ring with 1 and fix an ideal *I* of *A*. Recall that for each $n \in \mathbb{N}$ we have

 $I^n = \{ \text{finite sums of elements of the form } i_1 \dots i_n : i_k \in I \}.$

We also set $I^0 = A$. Assume that

$$\bigcap_{n \in \mathbb{N}} I^n = \{0\}.$$

Then given $0 \neq x \in A$, there exists unique $n \in \mathbb{Z}_{\geq 0}$ such that $x \in I^n \setminus I^{n+1}$. This *n* will be denoted by deg(*x*) and called the degree of *x*. We also set deg(0) = ∞ . Define

$$||x|| = 2^{-\deg(x)}$$

We claim that $\| \|$ is a norm on A. Indeed, since each I^n is closed under addition and $I^{n+m} = I^n \cdot I^m$ we have

(a)
$$\deg(x+y) \ge \min\{\deg(x), \deg(y)\}$$
 (b) $\deg(xy) \ge \deg(x) + \deg(y)$

These translate into "opposite" inequalities for $\| ~ \|$

(a')
$$||x + y|| \le \max\{||x||, ||y||\}$$
 (b') $||xy|| \le ||x|| \cdot ||y|$

Inequality (a') is called the <u>ultrametric triangle inequality</u> and is stronger than the usual triangle inequality $||x + y|| \le ||x|| + ||y||$.

Conditions (a') and (b') and the fact that each nonzero element of A has finite degree imply that $\| \|$ is indeed a norm. It is called the <u>*I*-adic norm on A</u>. The associated metric and topology are called the *I*-adic metric (resp. topology).

Definition. The completion of A with respect to the *I*-adic norm is called the *I*-adic completion of A and will be denoted by \hat{A}_I .

Example 1: Let R be a commutative ring, A = R[x] and I = (x). We claim that

 $\widehat{A}_I \cong R[[x]]$ (power series over R).

Proof (sketch). Consider two arbitrary elements of R[x]

$$f(x) = r_0 + \ldots + r_n x^n$$
 and $g(x) = s_0 + \ldots + s_n x^n$.

Then

 $||f - g|| = 2^{-m}$ where m is the **minimal** integer for which $r_m \neq s_m$ (*)

Define the map

 $\Phi : \{ \text{Cauchy sequences in } R[x] \} \to R[[x]]$

as follows:

Let f_1, f_2, \ldots be a Cauchy sequence in R[x]. Let f_{ik} be the coefficient of x^k in f_i . By (*) for any $k \in \mathbb{Z}_{\geq 0}$ the sequence $\{f_{ik}\}_{i=1}^{\infty}$ is eventually constant, that is, there exists $N = N(k) \in \mathbb{N}$ and $r_k \in R$ such that $f_{ik} = r_k$ for i > N. Define

$$\Phi([f_1, f_2, \ldots]) = r_0 + r_1 x + \ldots$$

Straightforward verification shows that Φ is well defined and establishes an isomorphism between \widehat{A}_I and R[[x]].

Example 2: Let $A = \mathbb{Z}$, l an integer ≥ 2 and I = (l). Then \widehat{A}_I is called the ring of *l*-adic integers and denoted by $\widehat{\mathbb{Z}}_l$.

Claim 26.1. The following hold:

- (1) For any sequence of integers a_0, a_1, \ldots the series $a_0 + a_1l + a_2l^2 + \ldots$ converges in $\widehat{\mathbb{Z}}_l$.
- (2) Any $x \in \widehat{\mathbb{Z}}_l$ can be uniquely written as $x = \sum_{n=0}^{\infty} a_n l^n$ where each $a_n \in \mathbb{Z}$ and $0 \le a_n \le l-1$.

Proof (sketch). (1) is easy. For instance, it follows from the fact that in any metric space satisfying ultrametric triangle inequality a series $\sum_{n=1}^{\infty} c_n$ converges if and only if $\lim_{n\to\infty} c_n = 0$.

(2) can be proved similarly to example 1. A key fact one needs to use is that any non-negative integer m can be uniquely written as a (finite) sum $m = \sum_{n=0}^{k} a_n l^n \text{ with } 0 \le a_n \le l-1 \text{ (this is just the expansion of } m \text{ to the base } l\text{).}$

An "informal consequence" of Claim 26.1(2) is that as a set $\widehat{\mathbb{Z}}_l$ can be identified with "power series in l." Addition and multiplication on $\widehat{\mathbb{Z}}_l$ can be defined using the usual "carry-over" algorithm for adding and multiplying integers written to the base l.