26. Completions of rings

26.1. **Norms on rings.** Let A be a ring and suppose that we have a function $\| \ \|: A \to \mathbb{R}_{\geq 0}$, called a <u>norm</u>, such that

- (1) $||x|| = 0 \iff x = 0$
- (2) $||x + y|| \le ||x|| + ||y||$ for all $x, y \in A$
- (3) $||xy|| \le ||x|| \cdot ||y||$ for all $x, y \in A$

Define the metric d on A associated with the norm $\| \quad \|$ by setting $d(x, y) =$ $||x-y||$. This is indeed a metric by conditions (1) and (2). With this metric A becomes a topological ring, that is, A is a topological space and the mappings $(x, y) \mapsto x + y$ and $(x, y) \mapsto x \cdot y$ from $A \times A$ to A are continuous. Let \overline{A} be the ring-theoretic completion of A with respect to d. As a set \overline{A} is just the usual topological completion of A , that is,

 $A = \{$ equivalence classes of Cauchy sequences of elements of A}

Ring operations on \hat{A} are defined by setting

 $[x_n] + [y_n] = [x_n + y_n]$ and $[x_n] \cdot [y_n] = [x_n \cdot y_n]$

where $[x_n]$ is the equivalence class of the sequence $\{x_n\}$.

Conditions (2) and (3) in the definition of a norm ensure that addition and multiplication on \widehat{A} are well defined and continuous.

Remark: (a) There is a natural embedding $\iota : A \to \hat{A}$ where $\iota(x)$ is the class of the constant sequence x, x, \ldots From now on we shall identify A with $\iota(A)$.

(b) The norm $\|\cdot\|$ can be extended from A to \widehat{A} by setting

$$
\| [x_n] \| = \lim_{n \to \infty} \|x_n\|.
$$

It is easy to see that this extension still satisfies the axioms $(1)-(3)$. **Example:** Let $A = \mathbb{Q}$ (rationals) and $||x|| = |x|$ (the absolute value of x). Then $A = \mathbb{R}$ (reals).

26.2. Completion with respect to I-adic metric. Let A be a ring with 1 and fix an ideal I of A. Recall that for each $n \in \mathbb{N}$ we have

 $I^n = \{\text{finite sums of elements of the form } i_1 \dots i_n : i_k \in I\}.$

We also set $I^0 = A$. Assume that

$$
\bigcap_{n\in\mathbb{N}}I^n=\{0\}.
$$

1

Then given $0 \neq x \in A$, there exists unique $n \in \mathbb{Z}_{\geq 0}$ such that $x \in I^n \setminus I^{n+1}$. This *n* will be denoted by $deg(x)$ and called the degree of x. We also set $deg(0) = \infty$. Define

$$
||x|| = 2^{-\deg(x)}
$$

We claim that $\|\cdot\|$ is a norm on A. Indeed, since each I^n is closed under addition and $I^{n+m} = I^n \cdot I^m$ we have

(a)
$$
\deg(x+y) \ge \min\{\deg(x), \deg(y)\}
$$
 (b) $\deg(xy) \ge \deg(x) + \deg(y)$

These translate into "opposite" inequalities for $\Vert \cdot \Vert$

(a')
$$
||x + y|| \le \max{||x||, ||y||}
$$
 (b') $||xy|| \le ||x|| \cdot ||y||$

Inequality (a') is called the ultrametric triangle inequality and is stronger than the usual triangle inequality $||x + y|| \le ||x|| + ||y||$.

Conditions (a') and (b') and the fact that each nonzero element of A has finite degree imply that $\|\cdot\|$ is indeed a norm. It is called the I-adic norm on A. The associated metric and topology are called the I-adic metric (resp. topology).

Definition. The completion of A with respect to the I-adic norm is called the <u>I-adic completion of A</u> and will be denoted by A_I .

Example 1: Let R be a commutative ring, $A = R[x]$ and $I = (x)$. We claim that

 $\widehat{A}_I \cong R[[x]]$ (power series over R).

Proof (sketch). Consider two arbitrary elements of $R[x]$

$$
f(x) = r_0 + \ldots + r_n x^n
$$
 and $g(x) = s_0 + \ldots + s_n x^n$.

Then

 $||f - g|| = 2^{-m}$ where m is the **minimal** integer for which $r_m \neq s_m$ (*)

Define the map

 $\Phi:$ {Cauchy sequences in $R[x]$ } $\rightarrow R[[x]]$

as follows:

Let f_1, f_2, \ldots be a Cauchy sequence in $R[x]$. Let f_{ik} be the coefficient of x^k in f_i . By (*) for any $k \in \mathbb{Z}_{\geq 0}$ the sequence $\{f_{ik}\}_{i=1}^{\infty}$ is eventually constant, that is, there exists $N = N(k) \in \mathbb{N}$ and $r_k \in R$ such that $f_{ik} = r_k$ for $i > N$. Define

$$
\Phi([f_1, f_2, \ldots]) = r_0 + r_1 x + \ldots
$$

Straightforward verification shows that Φ is well defined and establishes an isomorphism between \hat{A}_I and $R[[x]]$.

Example 2: Let $A = \mathbb{Z}$, l an integer ≥ 2 and $I = (l)$. Then \widehat{A}_I is called the ring of <u>l-adic integers</u> and denoted by $\widehat{\mathbb{Z}}_l$.

Claim 26.1. The following hold:

- (1) For any sequence of integers a_0, a_1, \ldots the series $a_0 + a_1 l + a_2 l^2 + \ldots$ converges in $\widehat{\mathbb{Z}}_l$.
- (2) Any $x \in \hat{\mathbb{Z}}_l$ can be uniquely written as $x = \sum_{n=0}^{\infty}$ $n=0$ $a_n l^n$ where each $a_n \in \mathbb{Z}$ and $0 \leq a_n \leq l-1$.

Proof (sketch). (1) is easy. For instance, it follows from the fact that in any metric space satisfying ultrametric triangle inequality a series $\sum_{n=1}^{\infty} c_n$ converges if and only if $\lim_{n \to \infty} c_n = 0$.

(2) can be proved similarly to example 1. A key fact one needs to use is that any non-negative integer m can be uniquely written as a (finite) sum $m = \sum^{k}$ $n=0$ $a_n l^n$ with $0 \le a_n \le l-1$ (this is just the expansion of m to the base l).

An "informal consequence" of Claim 26.1(2) is that as a set $\widehat{\mathbb{Z}}_l$ can be identified with "power series in l ." Addition and multiplication on $\widehat{\mathbb{Z}}_l$ can be defined using the usual "carry-over" algorithm for adding and multiplying integers written to the base l.