
24. Irreducibility in polynomials rings

In this lecture all rings are commutative with 1.

Main Problem: Let R be a domain and p(x) ∈ R[x] a non-constant poly-
nomial. We want to find sufficient conditions for p(x) to be irreducible in
R[x].
We are mostly interested in the case when R is a UFD, in which case R[x]
is also a UFD by Theorem 23.1.

24.1. Irreducibility in F [x] where F is a field. Throughout this sub-
section F is a field and p(x) ∈ F [x].

Observation A. Suppose that deg p(x) = 1, that is, p(x) = ax + b with
a 6= 0. Then p(x) is always irreducible and has a root in F , namely − b

a .

Observation B. Let α ∈ F . Then (x− α) | p(x) ⇐⇒ p(α) = 0.

Corollary 24.1. Suppose that deg p(x) ≥ 2 and p(x) is irreducible. Then
p(x) has no roots in F .

Corollary 24.2. Suppose that deg p(x) = 2 or 3. Then p is irreducible
⇐⇒ p has no roots in F .

Proof. “⇒” holds by Corollary 24.1.
“⇐” Suppose that p(x) is not irreducible, so p(x) = g(x)h(x) with g, h non-
units in F [x]. Then 1 ≤ deg g(x),deg h(x) and deg g(x) + deg h(x) ≤ 3.
Hence deg g(x) = 1 or deg h(x) = 1, so g or h has a root in F , whence p has
a root in F . �

24.2. Reduction modulo an ideal.

Proposition 24.3. Let R be a domain and I a prime ideal of R, so that
R/I is also a domain. Given f(x) ∈ R[x], denote by f(x) ∈ (R/I)[x] the
reduction of f(x) mod I. Let p(x) ∈ R[x] be a non-constant polynomial such
that

(i) The leading coefficient of p(x) does not lie in I

(ii) cont(p) = 1
(iii) p(x) is irreducible in (R/I)[x].

Then p(x) is irreducible in R[x].
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Proof. Suppose p(x) is not irreducible in R[x].
First note that since R is a domain and p(x) is non-constant, it cannot be
a unit in R[x]. Thus,

p(x) = g(x)h(x) (∗ ∗ ∗)
where g, h are non-units of R[x]. Note that g and h must be non-constant;
otherwise cont(p) 6= 1, contrary to (ii).
Since the reduction map f(x) 7→ f(x) is a ring homomorphism, applying it
to both sides of (***), we get

p(x) = ḡ(x)h̄(x) (!!!)

Note that deg p(x) = deg p(x) by assumption (i). Hence (***) and (!!!)
imply that deg ḡ(x) = deg g(x) > 0 and deg h̄(x) = deg h(x) > 0. Since R/I
is a domain, this implies that h̄ and ḡ are non-units if (R/I)[x]. Thus, p(x)
is reducible in (R/I)[x], contrary to (iii). �

Remark: (a) Conditions (i) and (ii) hold automatically if p(x) is monic,
that is, the leading coefficient of p(x) is equal to 1.
(b) The above proof does not fully use the assumption that R and R/I

are domains. All we needed is that for S = R or S = R/I non-constant
polynomials in S[x] are not units. However, this property holds under the
weaker assumption that S has no nilpotent elements (exercise: prove this).
Thus, Proposition 24.3 remains true if we only assume that R and R/I have
no nilpotent elements.

The following application of Proposition 24.3 is a homework problem.

Corollary 24.4. Let F be a field, f(x, y) ∈ F [x, y], and write f(x, y) =
fn(y)xn + . . . + f0(y) where fi(y) ∈ F [y]. Assume that there exists α ∈ F
such that

(i) fn(α) 6= 0
(ii) gcd(f0(y), . . . , fn(y)) = 1
(iii) f(x, α) is irreducible in F [x].

Then f(x, y) is irreducible in F [x, y].

Sample application: f(x, y) = x2 − y2 − 4 is irreducible in Q[x, y] (e.g.
apply the above corollary with α = 1).
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24.3. Eisenstein criterion.

Theorem (Eisenstein criterion). Let R is a domain, p ∈ R a prime element,
and let f(x) = anx

n + . . .+ a0 ∈ R[x]. Assume that

(i) p - an (ii) p | ai for 0 ≤ i ≤ n− 1

(iii) p2 - a0 (iv) cont(f) = 1.

Then f(x) is irreducible in R[x].

Remark: If R is a UFD, combining Eisenstein critetion with Gauss lemma,
we deduce that any f(x) ∈ R[x] satisfying (i)-(iv) is irreducible in F [x],
where F is the field of fractions of R.

Proof. Suppose not. Arguing as in Proposition 24.3, we deduce that f(x)
cannot by unit, so f(x) = g(x)h(x) with deg g > 0 and deg h > 0.
Consider the reduction mod p homomorphism R[x] → R/(p)[x]. As in
Proposition 24.3 the image of a polynomial u(x) ∈ R[x] under this ho-
momorphism is denoted by ū(x).
We have f(x) = ḡ(x)h̄(x) and deg ḡ,deg h̄ > 0 as in Proposition 24.3. Con-
dition (ii) implies that f(x) = ānx

n. Thus ḡ(x) · h̄(x) = ānx
n.

Claim. ḡ and h̄ are (non-constant) monomials, that is, ḡ(x) = βxm and
h̄(x) = γxl for some β, γ ∈ R/(p) and m, l > 0.

Proof of the claim. Suppose that ḡ and h̄ are not monomials. We will con-
sider the case when both of them are not monomials (the case when exactly
one of them is not a monomial is similar). Then we can write

ḡ(x) = βxm + . . .+ δxs and h̄(x) = γxl + . . .+ εxt

where βxm and γxl are highest degree terms and δxs and εxt are (nonzero)
lowest degree terms. By our assumption s < m and t < l. Multiplying these
expressions we get

f(x) = ḡ(x)h̄(x) = βγxm+l + . . .+ δεxs+t.

Since R/(p) is a domain, βγ 6= 0 and δε 6= 0. Thus, the above equality
implies that f(x) is not a monomial, which is a contradiction. �

The claim implies that g(x) = bxm + pu(x) and h(x) = cvl + pv(x) for some
b, c ∈ R and u(x), v(x) ∈ R[x]. But then

f(x) = g(x)h(x) = bcxm+l + pv(x)xm + pu(x)xl + p2u(x)v(x).

Note that the first three summands on the right hand side are divisible by x.
Thus, the constant term of f(x) is equal to the constant term of p2u(x)v(x)
and thus divisible by p2. This contradicts hypothesis (iii). �
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Standard applications of Eisenstein criterion.
1. f(x) = xn − p is irreducible in Z[x] (hence also in Q[x]) for any n ≥ 1
and prime p. This is clear.
2. If p is a prime, the Eisenstein polynomial Ep(x) = xp−1 + xp−2 + . . .+ 1
is irreducible in Z[x]. This can be proved as follows.
First note that Ep(x) is irreducible ⇐⇒ Ep(x + 1) is irreducible (this is
very easy). We can write Ep(x) = xp−1

x−1 , treating xp−1
x−1 as an element of the

field of fractions of Z[x]. Then

Ep(x+ 1) =
(x+ 1)p − 1

x
=

1
x

p∑
k=1

(
p

k

)
xk = xp−1 +

p−1∑
k=1

(
p

k

)
xk−1

Since p |
(
p
i

)
for 0 < i < p and

(
p

p−1

)
= p is not divisible by p2, the polynomial

Ep(x+ 1) is irreducible by the Eisenstein criterion.

3. f(x, y) = x4 +x3y2 +x2y3 +y is irreducible in Q[x, y]. This can be proved
by treating Q[x, y] as (Q[y])[x] and applying the Eisenstein criterion with
p = y.

Remark: Irreducibility of Ep(x) in Z[x] can also be proved by combining
the result of Problem#8 on the final exam and Proposition 24.3.


