
16. Free groups I

Recall the following elementary fact from Lecture 2: If G is a group and X

is a generating set of G, then any g ∈ G can be written as

g = xε1
1 . . . xεk

k where xi ∈ X, εi = ±1, and if

xi+1 = xi for some i, then εi+1 6= εi (we allow k = 0).

In this lecture we will construct a free group on X – this will be a group
generated by X such that any element has unique factorization of the above
form. Equivalently, there will be no non-trivial relations between the ele-
ments of X in this group, so the group will be “free of relations”.

16.1. Explicit construction of free groups. Let X be a set, and let
X−1 = {x−1 : x ∈ X} be the set of formal inverses of elements of X. At
this point the symbol x−1 does not have any special meaning; all we really
require is that X−1 is another set such that |X−1| = |X| and X ∩X−1 = ∅.

Let Ω(X) be the set of all (finite) words in the alphabet X ∪ X−1, that
is, the set of all sequences x1 . . . xk with xi ∈ X ∪ X−1. We assume that
Ω(X) contains the empty sequence denoted by e. Define the multiplication
on Ω(X) in the natural way

w · v = concatenation of w and v.

Clealrly, this multiplication is associative and the empty word e is an identity
element, so Ω(X) is a monoid. Note that Ω(X) is not a group; in fact, e is
the only invertible element of Ω(X).

Next we define an equivalence relation on Ω(X): given w, v ∈ Ω(X), we set
w ∼ v if w can be obtained from v by a finite sequence of operations of the
form

(i) insert a subword of the form xx−1 or x−1x with x ∈ X

(ii) delete a subword of the form xx−1 or x−1x with x ∈ X

Note: by a subword of a word w we mean a subsequence consisting of several
consecutive letters of w.

Now let F (X) = Ω(X)/ ∼ be the set of equivalence classes with respect to
the equivalence relation ∼. As usual by [w] we denote the equivalence class
of w ∈ Ω(X).
Define multiplication on F (X) by setting

[w] · [v] = [wv].
1



2

This multiplication is

• well defined – this is almost obvious from definition
• associative since multiplication on Ω(X) is associative and
• [e] is clearly an identity element

Finally, observe that any element of F (X) is invertible: if w = xε1
1 . . . xεk

k

with xi ∈ X and εi = ±1, we put v = x−εk
k . . . x−ε1

1 . Then clearly [w][v] =
[v][w] = [e].
Thus, we proved that F (X) is a group. In fact it is a free group on X

we were looking for, but to prove the latter we need a more transparent
description of F (X).

Definition. A word w ∈ Ω(X) is called reduced if f does not contain
subwords xx−1 or x−1x with x ∈ X. We shall denote the set of reduced
words by Ωred(X).

Proposition 16.1. For any w ∈ Ω(X) there exists a unique reduced word
v such that w ∼ v.

Proof. The existence is clear: if w is not reduced, we delete a subword xx−1

or x−1x, and repeat the procedure until we get a reduced word.
Suppose now that uniqueness does not hold, so there exist distinct reduced
words u and v with u ∼ v. By definition there exists a sequence

u = w0, w1, . . . , wk = v (∗ ∗ ∗)

where each wi+1 is obtained from wi by insersting or removing a subword
of the form xx−1 or x−1x.
For each w ∈ Ω(X) let |w| be the length of w, that is, the number of
symbols in w. Among all sequences of the form (***) choose one for which
|w0|+ |w1|+ . . . + |wk| is smallest possible.

Note: |w0| < |w1| and |wk−1| > |wk| since w0 and wk are reduced, and
|wi+1| 6= |wi| for each i.
Hence there exists i such that |wi−1| < |wi| > |wi+1|, so

wi−1 is obtained from wi by deleting some subword aa−1, with a ∈ X∪X−1

wi+1 is obtained from wi by deleting some subword bb−1, with b ∈ X∪X−1.
Case 1: aa−1 and bb−1 do not intersect (as subwords of wi).
Without loss of generality we can assume that aa−1 is located to the left of
bb−1. Then there exist subwords P,Q and R of wi such that

wi = Paa−1Qbb−1R, wi−1 = PQbb−1R and wi+1 = Paa−1QR

Set w′i = PQR. Then w0, w1, . . . , wi−1, w
′
i, wi+1, . . . , wk is still an admissible

sequence connecting u and v, but its length is smaller than that of the
original sequence since |w′i| = |wi| − 4, which contradicts our assumption.
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Case 2: Subwords aa−1 and bb−1 intersect.
We can still write wi−1 = PQ and wi = Paa−1Q. There are 3 subcases:

Subcase 1: the subwords aa−1 and bb−1 are located in the same place. Then
b = a, and by construction wi+1 = PQ = wi−1. Thus, we can get an
admissible sequence of smaller length by removing wi and wi+1.
Subcase 2: the subword bb−1 is located one position to the right of aa−1.
Thus a−1 = b and Q = aQ′ for some Q′, so that wi−1 = PaQ′ and wi+1 =
Paa−1(aQ′) = Pa(bb−1)Q′. Again by construction wi+1 = PaQ′ = wi−1,
and we reach a contradiction as in Case 1.
Subcase 3: the subword bb−1 is located one position to the left of aa−1. This
is analogous to subcase 2. �

Having proved Proposition 16.1, we can state a more explicit definition of
the free group F (X).

Corollary 16.2. The free group F (X) can be identified with the set Ωred(X)
of reduced words in X ∪X−1, with multiplication defined by

v · w = unique reduced word equivalent to v ◦ w,

where v ◦ w is the concatenation of v and w.

From now on we will usually think of F (X) as the set of reduced words in
Ω(X), and we will refer to F (X) as the standard free group on X. While
we are yet to give an abstract definition of a free group, Proposition 16.1
shows that F (X) has the desired property we formulated at the beginning
of the lecture:

Corollary 16.3. Let X be a set. Every element of the standard free group
F (X) can be uniquely written as f = xε1

1 . . . xεk
k where xi ∈ X, εi = ±1, and if

xi+1 = xi for some i, then εi+1 6= εi.


