16. FREE GrRouUPS I

Recall the following elementary fact from Lecture 2: If GG is a group and X

is a generating set of G, then any g € G can be written as

g =27 ... .2} where z; € X, g; = +1, and if

xiy1 = x; for some i, then g;11 # ¢; (we allow k£ = 0).

In this lecture we will construct a free group on X — this will be a group
generated by X such that any element has unique factorization of the above
form. Equivalently, there will be no non-trivial relations between the ele-

ments of X in this group, so the group will be “free of relations”.

16.1. Explicit construction of free groups. Let X be a set, and let
Xt = {27! : 2 € X} be the set of formal inverses of elements of X. At
this point the symbol ™! does not have any special meaning; all we really
require is that X 1 is another set such that | X ~!| = |X| and X N X~ = 0.

Let Q(X) be the set of all (finite) words in the alphabet X U X1, that
is, the set of all sequences z7 ...z, with z; € X U X!, We assume that
Q(X) contains the empty sequence denoted by e. Define the multiplication
on Q(X) in the natural way

w - v = concatenation of w and v.

Clealrly, this multiplication is associative and the empty word e is an identity
element, so (X) is a monoid. Note that (X) is not a group; in fact, e is

the only invertible element of Q(X).

Next we define an equivalence relation on Q(X): given w,v € Q(X), we set

w ~ v if w can be obtained from v by a finite sequence of operations of the

form

Lora7lz with z € X

or x 1z withx e X

(i) insert a subword of the form zz~

(ii) delete a subword of the form zz~!

Note: by a subword of a word w we mean a subsequence consisting of several

consecutive letters of w.

Now let F'(X) = Q(X)/ ~ be the set of equivalence classes with respect to

the equivalence relation ~. As usual by [w] we denote the equivalence class
of w e Q(X).
Define multiplication on F(X) by setting

fw] - [o] = [wo].
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This multiplication is
e well defined — this is almost obvious from definition
e associative since multiplication on Q(X) is associative and

e [¢] is clearly an identity element

Finally, observe that any element of F(X) is invertible: if w = z{' ... z}*

with z; € X and ¢; = +1, we put v = 2, ..

[v][w] = [e].

Thus, we proved that F(X) is a group. In fact it is a free group on X

.x1 ', Then clearly [w][v] =

we were looking for, but to prove the latter we need a more transparent

description of F(X).

Definition. A word w € Q(X) is called reduced if f does not contain
subwords zz~! or 71z with x € X. We shall denote the set of reduced
words by Qeq(X).

Proposition 16.1. For any w € Q(X) there exists a unique reduced word

v such that w ~ v.

Proof. The existence is clear: if w is not reduced, we delete a subword zz~!

or .Z'il

x, and repeat the procedure until we get a reduced word.
Suppose now that uniqueness does not hold, so there exist distinct reduced

words u and v with v ~ v. By definition there exists a sequence
U= Wy, Wi, ..., W =7V (s % %)

where each w;;1 is obtained from w; by insersting or removing a subword

1 1

of the form zz~* or ™ *z.

For each w € Q(X) let |w| be the length of w, that is, the number of
)

symbols in w. Among all sequences of the form choose one for which

|wo| + |wi| + ...+ |wg| is smallest possible.

Note: |wg| < |wi| and |wg—1| > |wg| since wy and wy, are reduced, and
|wit1| # |w;| for each i.
Hence there exists ¢ such that |w;—1| < |w;| > |w;41], so
w;_1 is obtained from w; by deleting some subword aa™!, with a € XUX !
w;41 is obtained from w; by deleting some subword bb~1, withb € XUX 1,
Case 1: aa~! and bb~! do not intersect (as subwords of w;).
Without loss of generality we can assume that aa™! is located to the left of
bb—!. Then there exist subwords P,Q and R of w; such that

w; = Paa 'QWb 'R, w;_1 = PQbb 'R and w1, = Paa QR

Set w, = PQR. Then wo, w1, ..., Wi—1, W}, wiy1,...,w is still an admissible

sequence connecting u and v, but its length is smaller than that of the

/

original sequence since |w}| = |w;| — 4, which contradicts our assumption.



Case 2: Subwords aa—! and bb~! intersect.

We can still write w;_; = PQ and w; = Paa"'Q. There are 3 subcases:

Subcase 1: the subwords aa~! and bb~! are located in the same place. Then
b = a, and by construction w;4+1 = PQ = w;—1. Thus, we can get an
admissible sequence of smaller length by removing w; and w;1.

Subcase 2: the subword bb~! is located one position to the right of aa™!.
Thus a~! = b and Q = a@’ for some Q’, so that w;_; = Pa@’ and w;;1 =
Paa=1(aQ’) = Pa(bb~1)Q’. Again by construction w;y1 = PaQ' = w;_1,
and we reach a contradiction as in Case 1.

Subcase 3: the subword bb~! is located one position to the left of aa~!. This

is analogous to subcase 2. ([

Having proved Proposition 16.1, we can state a more explicit definition of
the free group F'(X).

Corollary 16.2. The free group F(X) can be identified with the set Qpeq(X)
of reduced words in X U XY, with multiplication defined by
v-w = unique reduced word equivalent to v o w,

where v o w s the concatenation of v and w.

From now on we will usually think of F(X) as the set of reduced words in
Q(X), and we will refer to F'(X) as the standard free group on X. While

we are yet to give an abstract definition of a free group, Proposition 16.1

shows that F'(X) has the desired property we formulated at the beginning

of the lecture:

Corollary 16.3. Let X be a set. Fvery element of the standard free group
F(X) can be uniquely written as f = 7' ... x* where x; € X,e; = £1, and if

ZTi+1 = x; for some i, then ;41 # €;.



