16. Free groups I

Recall the following elementary fact from Lecture 2: If G is a group and X is a generating set of G, then any $g \in G$ can be written as

$$g = x_1^{\varepsilon_1} \dots x_k^{\varepsilon_k}$$
 where $x_i \in X, \varepsilon_i = \pm 1$, and if
 $x_{i+1} = x_i$ for some i , then $\varepsilon_{i+1} \neq \varepsilon_i$ (we allow $k = 0$).

In this lecture we will construct a free group on X – this will be a group generated by X such that any element has <u>unique</u> factorization of the above form. Equivalently, there will be no non-trivial relations between the elements of X in this group, so the group will be "free of relations".

16.1. Explicit construction of free groups. Let X be a set, and let $X^{-1} = \{x^{-1} : x \in X\}$ be the set of formal inverses of elements of X. At this point the symbol x^{-1} does not have any special meaning; all we really require is that X^{-1} is another set such that $|X^{-1}| = |X|$ and $X \cap X^{-1} = \emptyset$. Let $\Omega(X)$ be the set of all (finite) words in the alphabet $X \cup X^{-1}$, that is, the set of all sequences $x_1 \dots x_k$ with $x_i \in X \cup X^{-1}$. We assume that $\Omega(X)$ contains the empty sequence denoted by e. Define the multiplication on $\Omega(X)$ in the natural way

 $w \cdot v =$ concatenation of w and v.

Clealry, this multiplication is associative and the empty word e is an identity element, so $\Omega(X)$ is a monoid. Note that $\Omega(X)$ is not a group; in fact, e is the only invertible element of $\Omega(X)$.

Next we define an equivalence relation on $\Omega(X)$: given $w, v \in \Omega(X)$, we set $w \sim v$ if w can be obtained from v by a finite sequence of operations of the form

- (i) insert a subword of the form xx^{-1} or $x^{-1}x$ with $x \in X$
- (ii) delete a subword of the form xx^{-1} or $x^{-1}x$ with $x \in X$

Note: by a <u>subword</u> of a word w we mean a subsequence consisting of several *consecutive* letters of w.

Now let $F(X) = \Omega(X) / \sim$ be the set of equivalence classes with respect to the equivalence relation \sim . As usual by [w] we denote the equivalence class of $w \in \Omega(X)$.

Define multiplication on F(X) by setting

$$[w] \cdot [v] = [wv].$$

1

This multiplication is

- well defined this is almost obvious from definition
- associative since multiplication on $\Omega(X)$ is associative and
- [e] is clearly an identity element

Finally, observe that any element of F(X) is invertible: if $w = x_1^{\varepsilon_1} \dots x_k^{\varepsilon_k}$ with $x_i \in X$ and $\varepsilon_i = \pm 1$, we put $v = x_k^{-\varepsilon_k} \dots x_1^{-\varepsilon_1}$. Then clearly [w][v] = [v][w] = [e].

Thus, we proved that F(X) is a group. In fact it is a free group on X we were looking for, but to prove the latter we need a more transparent description of F(X).

Definition. A word $w \in \Omega(X)$ is called <u>reduced</u> if f does not contain subwords xx^{-1} or $x^{-1}x$ with $x \in X$. We shall denote the set of reduced words by $\Omega_{\text{red}}(X)$.

Proposition 16.1. For any $w \in \Omega(X)$ there exists a unique reduced word v such that $w \sim v$.

Proof. The existence is clear: if w is not reduced, we delete a subword xx^{-1} or $x^{-1}x$, and repeat the procedure until we get a reduced word.

Suppose now that uniqueness does not hold, so there exist distinct reduced words u and v with $u \sim v$. By definition there exists a sequence

$$u = w_0, w_1, \dots, w_k = v$$
 (***)

where each w_{i+1} is obtained from w_i by insersting or removing a subword of the form xx^{-1} or $x^{-1}x$.

For each $w \in \Omega(X)$ let |w| be the length of w, that is, the number of symbols in w. Among all sequences of the form (***) choose one for which $|w_0| + |w_1| + \ldots + |w_k|$ is smallest possible.

<u>Note:</u> $|w_0| < |w_1|$ and $|w_{k-1}| > |w_k|$ since w_0 and w_k are reduced, and $|w_{i+1}| \neq |w_i|$ for each *i*.

Hence there exists i such that $|w_{i-1}| < |w_i| > |w_{i+1}|$, so

 w_{i-1} is obtained from w_i by deleting some subword aa^{-1} , with $a \in X \cup X^{-1}$

 w_{i+1} is obtained from w_i by deleting some subword bb^{-1} , with $b \in X \cup X^{-1}$. Case 1: aa^{-1} and bb^{-1} do not intersect (as subwords of w_i).

Without loss of generality we can assume that aa^{-1} is located to the left of bb^{-1} . Then there exist subwords P, Q and R of w_i such that

$$w_i = Paa^{-1}Qbb^{-1}R, \quad w_{i-1} = PQbb^{-1}R \quad \text{and} \ w_{i+1} = Paa^{-1}QR$$

Set $w'_i = PQR$. Then $w_0, w_1, \ldots, w_{i-1}, w'_i, w_{i+1}, \ldots, w_k$ is still an admissible sequence connecting u and v, but its length is smaller than that of the original sequence since $|w'_i| = |w_i| - 4$, which contradicts our assumption.

 $\mathbf{2}$

Case 2: Subwords aa^{-1} and bb^{-1} intersect.

We can still write $w_{i-1} = PQ$ and $w_i = Paa^{-1}Q$. There are 3 subcases:

Subcase 1: the subwords aa^{-1} and bb^{-1} are located in the same place. Then b = a, and by construction $w_{i+1} = PQ = w_{i-1}$. Thus, we can get an admissible sequence of smaller length by removing w_i and w_{i+1} .

Subcase 2: the subword bb^{-1} is located one position to the right of aa^{-1} . Thus $a^{-1} = b$ and Q = aQ' for some Q', so that $w_{i-1} = PaQ'$ and $w_{i+1} = Paa^{-1}(aQ') = Pa(bb^{-1})Q'$. Again by construction $w_{i+1} = PaQ' = w_{i-1}$, and we reach a contradiction as in Case 1.

Subcase 3: the subword bb^{-1} is located one position to the left of aa^{-1} . This is analogous to subcase 2.

Having proved Proposition 16.1, we can state a more explicit definition of the free group F(X).

Corollary 16.2. The free group F(X) can be identified with the set $\Omega_{red}(X)$ of reduced words in $X \cup X^{-1}$, with multiplication defined by

 $v \cdot w =$ unique reduced word equivalent to $v \circ w$,

where $v \circ w$ is the concatenation of v and w.

From now on we will usually think of F(X) as the set of reduced words in $\Omega(X)$, and we will refer to F(X) as the standard free group on X. While we are yet to give an abstract definition of a free group, Proposition 16.1 shows that F(X) has the desired property we formulated at the beginning of the lecture:

Corollary 16.3. Let X be a set. Every element of the standard free group F(X) can be <u>uniquely</u> written as $f = x_1^{\varepsilon_1} \dots x_k^{\varepsilon_k}$ where $x_i \in X, \varepsilon_i = \pm 1$, and if $x_{i+1} = x_i$ for some i, then $\varepsilon_{i+1} \neq \varepsilon_i$.