
New Year Homework.

1. Let R be a commutative Noetherian ring and ϕ : R→ R a surjective ring

homomomorphism. Prove that ϕ must be an isomorphism. Hint: Consider

the ideals Ker (ϕn), n ∈ N, where ϕn is ϕ composed with itself n times.

2. Let R be a commutative Noetherian ring. Prove that the ring R[[x]] of

power series over R is also Noetherian. Hint: As you may expect, this can

be proved similarly to the Hilbert basis theorem (HBT) except that you have

to consider the lowest degree terms, not the highest degree terms (which may

not exist). In fact, the first part of the proof is even easier than in HBT, but

you will need some kind of limit argument at the end.

3. Let k be a field, n a positive integer and kn the n-dimensional affine space

over k. Recall that a non-empty algebraic subset V ⊆ kn is called irreducible

if V cannot be represented as a union V = V1 ∪ V2 where V1 6= V , V2 6= V

and V1 and V2 are both algebraic. Prove that V is irreducible if and only if

its vanishing ideal I(V ) is prime.

Hint: First establish the following properties (they follow very easily from

what we discussed in class):

(i) If W1 and W2 are algebraic subsets with W1 strictly contained in W2,

then I(W1) strictly contains I(W2).

(ii) If W is an algebraic subset, I = I(W ) and J is an ideal which strictly

contains I, then Z(J) is strictly contained in V .

4. Let A be a commutative ring with 1, let I be an ideal of A, and assume

that ∩n∈NIn = {0}. Let ÂI be the I-adic completion of A. Prove that if I is

a maximal ideal, then ÂI is a local ring whose unique maximal ideal is the

closure of I in ÂI .

Hint: Let Î be the closure of I in ÂI . Show that

(a) If x is an element of A \ I, then x is invertible in ÂI .

(b) Î is an ideal of ÂI .

(c) If {xn} is a convergent sequence of elements of A\ I, then the sequence

{x−1
n } of their inverses in ÂI also converges and lim x−1

n = (lim xn)−1.
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(d) Deduce from (a) and (c) that any element of ÂI \ Î is invertible in ÂI .

5. Let p be a prime, Fp a finite field of order p and Zp the ring of p-adic

integers.

(a) Prove the following version of Hensel’s lemma:

Hensel’s lemma: Let f(x) ∈ Z[x] be a polynomial with integer coefficients

and f(x) ∈ Fp[x] be the reduction of f(x) mod p. Suppose that there exists

a ∈ Z such that f(a) = 0 and f ′(a) 6= 0. Prove that f has a root in Zp.

Hint: Prove by induction that there exists a sequence of integers a =

a1, a2, . . . such that pn|f(an), p - f ′(an) and an+1 = an + pnbn for some

bn ∈ Z.

(b) Assume that p is odd. Prove that the equation x2 = −1 has a solution

in Zp if and only if p ≡ 1 mod 4. What happens when p = 2?
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