Homework #7.

Plan for next week: Free groups (Section 6.3).

Problems, to be submitted by Thursday, October, 22nd

1. Let $n \geq 3$ and $G = D_{2n}$, the dihedral group of order 2n.

(a) Prove that G contains a subgroup isomorphic to D_{2k} for any $k \mid n$.

(b) Prove that the dihedral group G is nilpotent if and only if n is power of 2.

2. (a) Let R be an associative ring with 1, and let $a, b \in R$ be such that 1+a and 1+b are invertible. Prove the following formula

$$(1+a)^{-1}(1+b)^{-1}(1+a)(1+b) = 1 + (1+a)^{-1}(1+b)^{-1}(ab-ba).$$

(b) Let R be an associative ring with 1 and $n \ge 2$ be an integer, and let $U_n(R)$ be the upper unitriangular subgroup of $GL_n(R)$. Prove that $U_n(R)$ is niplotent of class n-1 (we briefly outlined the proof in class). Note that you will need to apply (a) not to R itself but to the ring of $n \times n$ matrices over R.

Note: When you present your solution in (b), you may skip some computations, but the main points should be clear.

3. (a) Let $n \in \mathbb{N}$ be an integer, and suppose that for every non-prime divisor m of n there are no simple groups of order m. Prove that any group of order n is solvable.

(b) Prove that any group of order $p^k q$, where p > q are distinct primes, is solvable.

4. Problems 31 and 32 on page 200 of DF. **Note:** Problem 31 follows very easily from what we proved in class a couple of weeks ago.