Homework \#9. Due Tuesday, November 23rd Reading:

1. For this homework assignment: online class notes (Lectures 18-21) and Steinberg, parts of 4.2-4.4.
2. Plan for upcoming classes. Thu, Nov 18: permutation representations (online Lecture 22, Chapter 7 in Steinberg). Tue, Nov 23: TBA.

Problems:

For problems (or their parts) marked with a *, a hint is given later in the assignment. Do not to look at the hint(s) until you seriously tried to solve the problem without it.

1. Let p be a prime and $G=\operatorname{Heis}\left(\mathbb{Z}_{p}\right)$, the Heisenberg group over \mathbb{Z}_{p} defined in HW\#7.2
(a) Determine the number of conjugacy classes of G and their sizes. As in HW\#8.6, you can work directly with matrices or with their expressions in terms of the generators x, y, z introduced in HW\#7.2.
(b) Let $\omega \neq 1$ be a $p^{\text {th }}$ root of unity, that is, $\omega=e^{\frac{2 \pi k i}{p}}$ with $1 \leq$ $k \leq p-1$. Let V be a p-dimensional complex vector space with basis $e_{[0]}, e_{[1]}, \ldots, e_{[p-1]}$ where we think of indices as elements of \mathbb{Z}_{p}. Prove that there exists a representation $\left(\rho_{\omega}, V\right)$ of G such that
$-\rho_{\omega}(z) e_{[k]}=\omega e_{[k]}$ for each k (that is, $\rho_{\omega}(z)$ is just the scalar multiplication by ω),
$-\rho_{\omega}(y) e_{[k]}=e_{[k+1]}$ for each k (that is, $\rho_{\omega}(y)$ cyclically permutes the basis vectors) and finally
$-\rho_{\omega}(x) e_{[k]}=\omega^{k} e_{[k]}$ for each k.
(c) Prove that every representation in (b) is irreducible (do not do this directly from definition) and every irreducible complex representation of G is either one-dimensional or equivalent to (ρ_{ω}, V) for some ω.
2. Let (ρ, V) be a representation of a group G. Recall that the dual representation $\left(\rho^{*}, V^{*}\right)$ is defined by $\rho^{*}(g)(f)=f \circ \rho(g)^{-1}$ for all $f \in V^{*}$. Prove parts (1) and (2) of Claim 21.1 from class:
(1) $\left(\rho^{*}, V^{*}\right)$ is indeed a representation
(2) If β is any basis of V and β^{*} is the dual basis of V^{*}, then $\left[\rho^{*}(g)\right]_{\beta^{*}}=\left([\rho(g)]_{\beta}^{-1}\right)^{T}$
Note: Part (2) has almost nothing to do with representation theory. Recall from Lecture 9 that given an operator $A \in \operatorname{End}(V)$, its adjoint $A^{*} \in \operatorname{End}\left(V^{*}\right)$ is defined by $A^{*}(f)=f \circ A$ (recall that this notion of adjoint is related to but slightly different from adjoints in complex inner product spaces). Note that the homomorphism ρ^{*} from the definition of the dual representation can be expressed in terms of adjoints as follows:

$$
\rho^{*}(g)=\left(\rho(g)^{-1}\right)^{*} \text { for all } g \in G
$$

What you really need to prove is Claim 9.2 from online notes which asserts that $\left[A^{*}\right]_{\beta^{*}}=\left([A]_{\beta}\right)^{T}$ (make sure to explain how (2) follows from this).
3.* Let $G=S_{n}$ for some $n \geq 2$ and χ an irreducible complex character of G. Prove that χ is real-valued, that is, $\chi(g) \in \mathbb{R}$ for all $g \in G$.
4. Give an example of two representations V and W of the same group which are not equivalent, but have the same dimension and the same character. Recall that by Corollary 22.2 from class this cannot happen if G is finite and representations are complex.
5. Let (ρ, V) and $\left(\rho^{\prime}, V\right)$ be complex representations of a finite group G (the vector space V is the same for both representations). Suppose that $\rho^{\prime}(g)$ is conjugate to $\rho(g)$ in $\mathrm{GL}(V)$ for every $g \in G$. Prove that the representations (ρ, V) and $\left(\rho^{\prime}, V\right)$ are equivalent. Note: The result is not automatic since the matrix which conjugates $\rho^{\prime}(g)$ to $\rho(g)$ may depend on g.

Hint for 3: Use our discussion in Lecture 21 (=online Lecture 18) to find a general condition on a finite group G which guarantees that all of its complex characters are real-valued and then show that this condition holds for S_{n}.

