
Homework #8. Due Saturday, November 6th

Reading:

1. For this homework assignment: online class notes (Lectures 16 and

17) and Steinberg, parts of 4.2-4.4. Note: We have not yet covered

the material from Lecture 17 in class (will do so on Tuesday, Nov

2); however, several problems in this assignment are based on that

material, and you are strongly encouraged to start reading before we

get to that material in class.

2. Next week we will state and start proving orthogonality relations

for characters (Theorem 17.1 from online notes) – see online Lectures

17, 18 and 19. The corresponding material in Steinberg is in sections

4.2, 4.3 and 4.4, but in a rather different order.

Problems:

For problems (or their parts) marked with a *, a hint is given later in

the assignment. Do not to look at the hint(s) until you seriously tried

to solve the problem without it.

1.* Prove that [Sn, Sn] = An.

2. Let G be a group, N a normal subgroup of G and let π : G→ G/N

be the natural projection.

(a) Given a representation ρ : G/N → GL(V ) of G/N , define the

representation ρ̃ : G→ GL(V ) of G by

ρ̃(g) = ρ ◦ π(g) = ρ(gN). (∗ ∗ ∗)

Prove that ρ̃ is irreducible ⇐⇒ ρ is irreducible. Also prove

that two representations ρ1 and ρ2 of G/N are equivalent ⇐⇒
the corresponding representations ρ̃1 and ρ̃2 of G are equivalent.

(b) Now fix a field F . Let

– Irr(G) be the set of equivalence classes of irreducible rep-

resentations of G over F ;

– Irr(G/N) the set of equivalence classes of irreducible rep-

resentations of G/N over F ;

– Irr(G,N) the set of all [ρ] ∈ Irr(G) such that N ⊆ Kerρ.

(here [ρ] is the equivalence class of the representation ρ). Define

the map Φ : Irr(G/N)→ Irr(G) by

Φ([ρ]) = [ρ̃]
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(where ρ̃ is defined by (***)). Explain why Φ is well defined

and injective (this follows immediately from (a)) and then prove

that Im(Φ) = Irr(G,N).

Remark: In Lecture 17 (online Lecture 14) we considered the map

Φ in a special case when we proved that for any group G there is

a natural bijection between 1-dimensional representations of G and 1-

dimensional representations of its abelianization Gab. However the case

of 1-dimensional representations is slightly easier, as two 1-dimensional

representations are equivalent if and only if they are equal, so in that

case one does not have to worry about the equivalence classes in the

definition of Φ.

3. Let (ρ1, V1) and (ρ2, V2) be representations of a group G over the

same field. Let (ρ1 ⊕ ρ2, V1 ⊕ V2) and (ρ1 ⊗ ρ2, V1 ⊗ V2) be their direct

sum and tensor product, respectively. Prove that

(i) χρ1⊕ρ2(g) = χρ1(g) + χρ2(g) for all g ∈ G
(ii) χρ1⊗ρ2(g) = χρ1(g) · χρ2(g) for all g ∈ G

4. Online Lecture 17 states what should be the character of the unique

(up to equivalence) 2-dimensional irreducible complex representation of

S4 based on our knowledge of the rest of the character table. Now prove

this claim using Theorem 17.1. Include all the relevant calculations and

try to make your argument as efficient as possible.

5. Compute the character table for a cyclic group of order 3 (with full

justification).

6. Compute the character table for the alternating group A4 (with

detailed justification) and explicitly construct its irreducible complex

representations. First prove that [A4, A4] = V4, the Klein 4-group.

Recall that V4 = {e, (12)(34), (13)(24), (14)(23)}.
Note: The description of conjugacy classes of An is similar to that of

Sn. Note that since An is normal in Sn, every conjugacy class of Sn is

either contained in An or has empty intersection with An, but a single

conjugacy class of Sn contained in An may split into several conjugacy

classes of An. In other words, two elements of An may be conjugate

in Sn, but not conjugate in An. The following result (which is not an

official part of homework, but which are you encouraged to prove as an

exercise) describe exactly when and what kind of splitting occurs:

Let g ∈ An and let K(g) be its conjugacy class in Sn. Let C(g) be the

centralizer of g in Sn, that is, C(g) = {x ∈ Sn : gx = xg}.
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(a) Suppose that C(g) 6⊆ An, that is, C(g) contains an odd per-

mutation. Then K(g) is a single conjugacy class of An, that is,

any two elements of K(g) are conjugate in An.

(b) Suppose that C(g) ⊆ An. Then K(g) is a disjoint union of two

conjugacy classes of An. One of these is KAn(g), the conjugacy

class of g in An, and the other is KAn(xgx−1) where x ∈ Sn is

any odd permutation.

7. Let G be a group and (ρ, V ) a representation of G.

(a) Prove that for any v ∈ V , the smallest G-invariant subspace

of V containing v is the span of the set π(G)v where π(G)v =

{π(g)v : g ∈ G}.
(b) Now assume that G is finite and (ρ, V ) is cyclic. Prove that

dim(V ) ≤ |G|.
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Hint for 1: Prove the inclusions An ⊆ [Sn, Sn] and [Sn, Sn] ⊆ An
separately. For the first one use the fact that An is generated by 3-

cycles. For the second one use basic properties of the commutator

subgroup discussed in class.


