Homework \#4. Due Saturday, Sep 25

1. Reading for this homework assignment: Friedberg-Insel-Spence 6.1, $6.3+$ online class notes (Lectures 7,8)
2. Plan for the next week: Finish diagonalization in Inner Product Spaces (Friedberg-Insel-Spence 6.4, 6.5, online lectures 7,8), dual spaces (Friedberg-Insel-Spence 2.6, online lectures 9,10); start talking about tensor products (online lecture 10).

Problems:

For problems (or their parts) marked with a *, a hint is given later in the assignment. Do not to look at the hint(s) until you seriously tried to solve the problem without it.
Note: Problems 1, 2 and 3 establish some fundamental facts about unitary operators that we will continuously use when talking and representations.

1. Let V be a finite-dimensional inner product space over \mathbb{C} and let $A \in \mathcal{L}(V)$ be a normal operator. Prove that A is unitary if and only if all eigenvalues of A have absolute value 1 .
2. Let V be an inner product space over \mathbb{C} and $A \in G L(V)$, that is, $A \in \mathcal{L}(V)$ is invertible.
(a) Prove that A is unitary if and only if $\langle A x, A y\rangle=\langle x, y\rangle$ for all $x, y \in V$.
(b)* Now use (a) to prove that A is unitary if and only if $\|A x\|=\|x\|$ for all $x \in V$.
3. Let V be an inner product space over \mathbb{C}, let $A \in \mathcal{L}(V)$ be unitary, and let $W \subseteq V$ be a finite-dimensional subspace of V which is A invariant (that is, $A(W) \subseteq W$).
(a) Prove that if $A(W)=W$.
(b) Use (a) to prove that W^{\perp} is also A-invariant.
4. Let $A=\left(\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right)$. Find a unitary matrix U such that $U^{-1} A U$ is diagonal (see the online version of Lecture 8 for a brief discussion of the algorithm for finding U). Try to determine the eigenvalues of A without computing the characteristic polynomial.
5. Let V be a finite-dimensional inner product space over \mathbb{C} and let H and G be Hermitian forms on V.
(a)* Assume that G is positive-definite. Prove that there exists a basis β of V such that $[H]_{\beta}$ and $[G]_{\beta}$ are both diagonal (equivalently, if $A, B \in \operatorname{Mat}_{n}(\mathbb{C})$ are Hermitian matrices and A is positive definite, there exists $P \in G L_{n}(\mathbb{C})$ such that $P^{*} A P$ and $P^{*} B P$ are both diagonal).
(b) (bonus) Now give an explicit example showing that if neither G nor H is positive-definite, the conclusion of (a) may fail.

Hint for 2(b): One direction is straightforward. For the other direction use the result of an earlier homework problem.

Hint for 5: The result follows from one of the theorems from the online lecture 8 with almost no additional computations (but it may take some work to figure out which result to use).

