
Homework #3. Due Saturday, Sep 18

1. Reading for this homework assignment: Friedberg-Insel-Spence 6.1,

6.3 + online class notes (Lectures 5,6)

2. Plan for the next week: Diagonalization in Inner Product Spaces

(Friedberg-Insel-Spence 6.4, 6.5, online lectures 7,8)

Problems:

1. Let V be a finite-dimensional vector space over a field F of char-

acteristic 2 and H a symmetric (=skew-symmetric since charF = 2)

bilinear form on V . Prove that there exist subspaces V1 and V2 of V

such that

(a) V = V1 ⊕ V2 and V1 ⊥ V2 (that is, H(v, w) = 0 for all v ∈ V1
and w ∈ V2).

(b) H|V1 is diagonalizable (that is, [H|V1 ]β1 is diagonal for some basis

β1 of V1)

(c) H|V2 is alternating and non-degenerate (such a form is called

symplectic).

Hint: Combine the proofs of Theorems 4.2 and 5.1 from class.

2. As observed at the beginning of Lecture 5, if V is a finite-dimensional

vector space and H is a bilinear form on V , the following conditions

are equivalent:

(i) H is left non-degenerate

(ii) H is right non-degenerate

(iii) [H]β is invertible for some (hence any) basis β of V .

Now assume that dimV is countably infinite and β = {v1, v2, . . .} is a

basis of V .

(a) Find (with proof) conditions (ND)left and (ND)right on an in-

finite square matrix such that H is left non-degenerate ⇐⇒
[H]β satisfies (ND)left and H is right non-degenerate ⇐⇒
[H]β satisfies (ND)right. Hint: The conditions will be non-

equivalent, but in the finite dimensional case they should both

reduce to different (but similar) well-known characterizations

of invertible matrices.

(b) Use (a) to find a bilinear form H on V which is left-nondenerate

but not right-nondegenerate.
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3. Let V be an inner product space.

(a) Prove the parallelogram law: ‖x+y‖2+‖x−y‖2 = 2(‖x‖2+‖y‖2)
for all x, y ∈ V .

(b) Show that 〈x, y〉 can be expressed as a linear combination of

squares of norms. In Lecture 6 we discussed how to do this for

the real inner product spaces.

4. Let V be a finite-dimensional complex inner product space and

A ∈ L(V ). Prove that Im(A∗) = Ker(A)⊥ (where the orthogonal

complement is with respect to the inner product on V ). Here A∗ is

the adjoint operator of A (see the end of the online lecture 6 for the

definition).

5. Let V be an inner product space where dimV is finite or countable,

β an orthonormal basis of V and A ∈ L(V ).

(a) Prove that if A∗ ∈ L(V ) is any operator such that 〈Ax, y〉 =

〈x,A∗y〉 for all x, y ∈ V , then [A∗]β = [A]∗β (where [A]∗β is the

conjugate transpose of A). In particular, this shows that the

adjoint operator is unique (if exists).

(b) As we will prove in class, the adjoint A∗ always exists if dimV

is finite. Now use (a) and a result from earlier homeworks to

show that if V is countably-dimensional, then the adjoint A∗

may not exist.


