Homework #3. Due Saturday, Sep 18

Reading for this homework assignment: Friedberg-Insel-Spence 6.1,
6.3 + online class notes (Lectures 5,6)

2. Plan for the next week: Diagonalization in Inner Product Spaces (Friedberg-Insel-Spence 6.4, 6.5, online lectures 7,8)

Problems:

1. Let V be a finite-dimensional vector space over a field F of characteristic 2 and H a symmetric (=skew-symmetric since char F = 2) bilinear form on V. Prove that there exist subspaces V_1 and V_2 of V such that

- (a) $V = V_1 \oplus V_2$ and $V_1 \perp V_2$ (that is, H(v, w) = 0 for all $v \in V_1$ and $w \in V_2$).
- (b) $H_{|V_1|}$ is diagonalizable (that is, $[H_{|V_1|}]_{\beta_1}$ is diagonal for some basis β_1 of V_1)
- (c) $H_{|V_2|}$ is alternating and non-degenerate (such a form is called symplectic).

Hint: Combine the proofs of Theorems 4.2 and 5.1 from class.

2. As observed at the beginning of Lecture 5, if V is a finite-dimensional vector space and H is a bilinear form on V, the following conditions are equivalent:

- (i) H is left non-degenerate
- (ii) H is right non-degenerate
- (iii) $[H]_{\beta}$ is invertible for some (hence any) basis β of V.

Now assume that dim V is countably infinite and $\beta = \{v_1, v_2, \ldots\}$ is a basis of V.

- (a) Find (with proof) conditions $(ND)_{left}$ and $(ND)_{right}$ on an infinite square matrix such that H is left non-degenerate $\iff [H]_{\beta}$ satisfies $(ND)_{left}$ and H is right non-degenerate $\iff [H]_{\beta}$ satisfies $(ND)_{right}$. **Hint:** The conditions will be non-equivalent, but in the finite dimensional case they should both reduce to different (but similar) well-known characterizations of invertible matrices.
- (b) Use (a) to find a bilinear form H on V which is left-nondenerate but not right-nondegenerate.

- **3.** Let V be an inner product space.
 - (a) Prove the parallelogram law: $||x+y||^2 + ||x-y||^2 = 2(||x||^2 + ||y||^2)$ for all $x, y \in V$.
 - (b) Show that $\langle x, y \rangle$ can be expressed as a linear combination of squares of norms. In Lecture 6 we discussed how to do this for the real inner product spaces.

4. Let V be a finite-dimensional complex inner product space and $A \in \mathcal{L}(V)$. Prove that $\operatorname{Im}(A^*) = \operatorname{Ker}(A)^{\perp}$ (where the orthogonal complement is with respect to the inner product on V). Here A^* is the adjoint operator of A (see the end of the online lecture 6 for the definition).

5. Let V be an inner product space where dim V is finite or countable, β an orthonormal basis of V and $A \in \mathcal{L}(V)$.

- (a) Prove that if $A^* \in \mathcal{L}(V)$ is any operator such that $\langle Ax, y \rangle = \langle x, A^*y \rangle$ for all $x, y \in V$, then $[A^*]_{\beta} = [A]^*_{\beta}$ (where $[A]^*_{\beta}$ is the conjugate transpose of A). In particular, this shows that the adjoint operator is unique (if exists).
- (b) As we will prove in class, the adjoint A^* always exists if dim V is finite. Now use (a) and a result from earlier homeworks to show that if V is countably-dimensional, then the adjoint A^* may not exist.