Homework \#3. Due Saturday, Sep 18

1. Reading for this homework assignment: Friedberg-Insel-Spence 6.1, $6.3+$ online class notes (Lectures 5,6)
2. Plan for the next week: Diagonalization in Inner Product Spaces (Friedberg-Insel-Spence 6.4, 6.5, online lectures 7,8)

Problems:

1. Let V be a finite-dimensional vector space over a field F of characteristic 2 and H a symmetric (=skew-symmetric since char $F=2$) bilinear form on V. Prove that there exist subspaces V_{1} and V_{2} of V such that
(a) $V=V_{1} \oplus V_{2}$ and $V_{1} \perp V_{2}$ (that is, $H(v, w)=0$ for all $v \in V_{1}$ and $w \in V_{2}$).
(b) $H_{\mid V_{1}}$ is diagonalizable (that is, $\left[H_{\mid V_{1}}\right]_{\beta_{1}}$ is diagonal for some basis β_{1} of V_{1})
(c) $H_{\mid V_{2}}$ is alternating and non-degenerate (such a form is called symplectic).

Hint: Combine the proofs of Theorems 4.2 and 5.1 from class.
2. As observed at the beginning of Lecture 5 , if V is a finite-dimensional vector space and H is a bilinear form on V, the following conditions are equivalent:
(i) H is left non-degenerate
(ii) H is right non-degenerate
(iii) $[H]_{\beta}$ is invertible for some (hence any) basis β of V.

Now assume that $\operatorname{dim} V$ is countably infinite and $\beta=\left\{v_{1}, v_{2}, \ldots\right\}$ is a basis of V.
(a) Find (with proof) conditions $(N D)_{\text {left }}$ and $(N D)_{\text {right }}$ on an infinite square matrix such that H is left non-degenerate \Longleftrightarrow $[H]_{\beta}$ satisfies $(N D)_{\text {left }}$ and H is right non-degenerate \Longleftrightarrow $[H]_{\beta}$ satisfies $(N D)_{\text {right }}$. Hint: The conditions will be nonequivalent, but in the finite dimensional case they should both reduce to different (but similar) well-known characterizations of invertible matrices.
(b) Use (a) to find a bilinear form H on V which is left-nondenerate but not right-nondegenerate.
3. Let V be an inner product space.
(a) Prove the parallelogram law: $\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right)$ for all $x, y \in V$.
(b) Show that $\langle x, y\rangle$ can be expressed as a linear combination of squares of norms. In Lecture 6 we discussed how to do this for the real inner product spaces.
4. Let V be a finite-dimensional complex inner product space and $A \in \mathcal{L}(V)$. Prove that $\operatorname{Im}\left(A^{*}\right)=\operatorname{Ker}(A)^{\perp}$ (where the orthogonal complement is with respect to the inner product on V). Here A^{*} is the adjoint operator of A (see the end of the online lecture 6 for the definition).
5. Let V be an inner product space where $\operatorname{dim} V$ is finite or countable, β an orthonormal basis of V and $A \in \mathcal{L}(V)$.
(a) Prove that if $A^{*} \in \mathcal{L}(V)$ is any operator such that $\langle A x, y\rangle=$ $\left\langle x, A^{*} y\right\rangle$ for all $x, y \in V$, then $\left[A^{*}\right]_{\beta}=[A]_{\beta}^{*}$ (where $[A]_{\beta}^{*}$ is the conjugate transpose of A). In particular, this shows that the adjoint operator is unique (if exists).
(b) As we will prove in class, the adjoint A^{*} always exists if $\operatorname{dim} V$ is finite. Now use (a) and a result from earlier homeworks to show that if V is countably-dimensional, then the adjoint A^{*} may not exist.

