Homework #2. Due by 6pm on Saturday, Sep 11th Plan for next week:

Alternating and skew-symmetric bilinear forms. Sesquilinear and hermitian forms. Inner product spaces.

Problems:

For problems (or their parts) marked with a *, a hint is given later in the assignment. Do not to look at the hint(s) until you seriously tried to solve the problem without it.

- 1. Let V and H be as in Problem 3 of Homework 1.
 - (a) Prove that *H* is positive definite directly from definition. You will need some basic facts from real analysis to make the argument rigorous.
 - (b) Now use the "modified Gram-Schmidt process" (that is, the algorithm from the proof of Theorem 4.2 from class) to find a basis β such that $[H]_{\beta}$ is the identity matrix.
- **2.*** Let $V = Mat_n(\mathbb{R})$ for some $n \in \mathbb{N}$, and let H be the bilinear form on V given by H(A, B) = Tr(AB). Prove that H is symmetric and compute its signature (the pair (p, q) from the statement of Theorem 4.5). It may be a good idea to start with n = 2 and n = 3.
- **3.** The goal of this problem is to prove the following theorem:

Theorem: Let F be a finite field with $\operatorname{char}(F) \neq 2$, V a finite-dimensional vector space over F and H a symmetric bilinear form on V. Then there exists a basis β of V such that $[H]_{\beta}$ is diagonal and at MOST one entry of $[H]_{\beta}$ is different from 0 or 1 (in particular, if H is non-degenerate, then there exists a basis β such that $[H]_{\beta} = \operatorname{diag}(1, \ldots, 1, \lambda)$ for some $\lambda \in F$).

If you do not feel comfortable working with arbitrary finite fields, you can assume that $F = \mathbb{Z}_p$ for some p > 2 (this does not substantially simplify the problem).

- (a) * Let Q be the set of squares in F, that is, $Q = \{f \in F : f = x^2 \text{ for some } x \in F\}$. Prove that $|Q| = \frac{|F|+1}{2}$.
- (b) * Now take any nonzero $a, b \in F$. Use (a) to prove that there exist $x, y \in F$ such that $ax^2 + by^2 = 1$.
- (c) Now use (b) to prove the above Theorem. **Hint:** The main case to consider is when $\dim(V) = 2$ and H is non-degenerate.

Once you prove the theorem in this case, the general statement follows fairly easily by induction (using the diagonalization theorem, Theorem 4.2). In the case $\dim(V) = 2$ and H is non-degenerate we already know that there is a basis β such that $[H]_{\beta}$ is diagonal with nonzero diagonal entries. Now starting with that basis, try to imitate the proof of Theorem 4.2, using (b) at some stage.

- **4.*** Let H be a bilinear form on a finite-dimensional vector space V. In class we proved that for any subspace W of V we have $\dim(W) + \dim(W^{\perp}) \geq \dim(V)$ (Lemma 3.4) where W^{\perp} is the orthogonal complement of W with respect to H. Prove that if H is non-degenerate, then $\dim(W) + \dim(W^{\perp}) = \dim(V)$. One way to prove this is to show that the map ϕ from the proof of Lemma 3.4 is surjective.
- **5.** In this problem we discuss linear maps and bilinear forms on vector spaces of (infinite) countable dimension over an arbitrary field F. One example of such a space is F_{fin}^{∞} , the set of (infinite) sequences of elements of F in which only finitely many elements are nonzero. The set $\{e_1, e_2, \ldots\}$ is a basis of F_{fin}^{∞} where e_i is the sequence whose i^{th} element is 1 and all other elements are 0.

Now let V be any countably-dimensional vector space over F and $\beta = \{v_1, v_2, \ldots\}$ a basis of V. Any $v \in V$ is a linear combination of finitely many elements of β , so we can write $v = \sum_{i=1}^{n} \lambda_i v_i$ for some n (if some v_i with $i \leq n$ does not appear in the expansion of v, we simply let $\lambda_i = 0$). Define $[v]_{\beta} = (\lambda_1, \ldots, \lambda_n, 0, 0, \ldots) \in F_{fin}^{\infty}$.

(a) (practice) Prove that the map $\phi: V \to F_{fin}^{\infty}$ given by $\phi(v) = [v]_{\beta}$ is an isomorphism of vector spaces.

Denote by $Mat_{\infty}(F)$ the set of all matrices with countably many rows and columns whose entries are in F. Given a bilinear form H on V, let $[H]_{\beta} \in Mat_{\infty}(F)$ be the matrix whose (i, j)-entry is $H(v_i, v_j)$.

- (b) Prove that $H(v, w) = [v]_{\beta}^{T}[H]_{\beta}][w]_{\beta}$ for any $v, w \in V$ (here we consider $[v]_{\beta}$ and $[w]_{\beta}$ as columns). In particular, explain why the expression on the right-hand side is well defined even though $[H]_{\beta}$ is an infinite-size matrix.
- (c) Prove that the map $\Phi: Bil(V) \to Mat_{\infty}(F)$ given by $\Phi(H) = [H]_{\beta}$ is an isomorphism of vector spaces.

Now let $T \in \mathcal{L}(V)$ be a linear map from V to V. Define $[T]_{\beta} \in Mat_{\infty}(F)$ to be the matrix whose i^{th} column is $[Tv_i]_{\beta}$.

(d) Prove that the map $\Psi: \mathcal{L}(V) \to Mat_{\infty}(F)$ given by $\Psi(T) = [T]_{\beta}$ is linear and injective, but not surjective, and explicitly describe its image.

Hint for 2. Start by computing the matrix of H with respect to the "standard" basis $\{e_{ij}\}$. This matrix is not diagonal, but if you order the elements of $\{e_{ij}\}$ in the right way, the matrix will be block-diagonal with blocks of size at most 2.

Hint for 3(a). Show that if F is any field with $char(F) \neq 2$, then for any nonzero $f \in F$ the equation $x^2 = f$ has either 2 or 0 solutions.

Hint for 3(b). Rewrite the equation as $1 - ax^2 = by^2$ and use a counting argument (what you need from (a) is that more than half of all elements of F are squares).

Hint for 4. Let $\{w_1, \ldots, w_m\}$ be a basis of W, and assume that ϕ from the proof of Lemma 3.4 is not surjective. Show that there exist $\lambda_1, \ldots, \lambda_m \in F$, not all zero, such that $\sum_{i=1}^m \lambda_i H(w_i, v) = 0$ for all $v \in V$ and deduce that H must be degenerate.