
Homework #2. Due by 6pm on Saturday, Sep 11th

Plan for next week:

Alternating and skew-symmetric bilinear forms. Sesquilinear and her-

mitian forms. Inner product spaces.

Problems:

For problems (or their parts) marked with a *, a hint is given later in

the assignment. Do not to look at the hint(s) until you seriously tried

to solve the problem without it.

1. Let V and H be as in Problem 3 of Homework 1.

(a) Prove that H is positive definite directly from definition. You

will need some basic facts from real analysis to make the argu-

ment rigorous.

(b) Now use the “modified Gram-Schmidt process” (that is, the

algorithm from the proof of Theorem 4.2 from class) to find a

basis β such that [H]β is the identity matrix.

2.* Let V = Matn(R) for some n ∈ N, and let H be the bilinear

form on V given by H(A,B) = Tr(AB). Prove that H is symmet-

ric and compute its signature (the pair (p, q) from the statement of

Theorem 4.5). It may be a good idea to start with n = 2 and n = 3.

3. The goal of this problem is to prove the following theorem:

Theorem: Let F be a finite field with char(F ) 6= 2, V a finite-

dimensional vector space over F and H a symmetric bilinear form

on V . Then there exists a basis β of V such that [H]β is diagonal

and at MOST one entry of [H]β is different from 0 or 1 (in par-

ticular, if H is non-degenerate, then there exists a basis β such that

[H]β = diag(1, . . . , 1, λ) for some λ ∈ F ).

If you do not feel comfortable working with arbitrary finite fields,

you can assume that F = Zp for some p > 2 (this does not substantially

simplify the problem).

(a) * Let Q be the set of squares in F , that is, Q = {f ∈ F : f =

x2 for some x ∈ F}. Prove that |Q| = |F |+1
2

.

(b) * Now take any nonzero a, b ∈ F . Use (a) to prove that there

exist x, y ∈ F such that ax2 + by2 = 1.

(c) Now use (b) to prove the above Theorem. Hint: The main

case to consider is when dim(V ) = 2 and H is non-degenerate.
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Once you prove the theorem in this case, the general state-

ment follows fairly easily by induction (using the diagonaliza-

tion theorem, Theorem 4.2). In the case dim(V ) = 2 and H

is non-degenerate we already know that there is a basis β such

that [H]β is diagonal with nonzero diagonal entries. Now start-

ing with that basis, try to imitate the proof of Theorem 4.2,

using (b) at some stage.

4.* Let H be a bilinear form on a finite-dimensional vector space V .

In class we proved that for any subspace W of V we have dim(W ) +

dim(W⊥) ≥ dim(V ) (Lemma 3.4) where W⊥ is the orthogonal com-

plement of W with respect to H. Prove that if H is non-degenerate,

then dim(W ) + dim(W⊥) = dim(V ). One way to prove this is to show

that the map φ from the proof of Lemma 3.4 is surjective.

5. In this problem we discuss linear maps and bilinear forms on vector

spaces of (infinite) countable dimension over an arbitrary field F . One

example of such a space is F∞
fin, the set of (infinite) sequences of ele-

ments of F in which only finitely many elements are nonzero. The set

{e1, e2, . . .} is a basis of F∞
fin where ei is the sequence whose ith element

is 1 and all other elements are 0.

Now let V be any countably-dimensional vector space over F and

β = {v1, v2, . . .} a basis of V . Any v ∈ V is a linear combination of

finitely many elements of β, so we can write v =
∑n

i=1 λivi for some n

(if some vi with i ≤ n does not appear in the expansion of v, we simply

let λi = 0). Define [v]β = (λ1, . . . , λn, 0, 0, . . .) ∈ F∞
fin.

(a) (practice) Prove that the map φ : V → F∞
fin given by φ(v) = [v]β

is an isomorphism of vector spaces.

Denote by Mat∞(F ) the set of all matrices with countably many rows

and columns whose entries are in F . Given a bilinear form H on V , let

[H]β ∈Mat∞(F ) be the matrix whose (i, j)-entry is H(vi, vj).

(b) Prove that H(v, w) = [v]Tβ [H]β][w]β for any v, w ∈ V (here we

consider [v]β and [w]β as columns). In particular, explain why

the expression on the right-hand side is well defined even though

[H]β is an infinite-size matrix.

(c) Prove that the map Φ : Bil(V )→ Mat∞(F ) given by Φ(H) =

[H]β is an isomorphism of vector spaces.

Now let T ∈ L(V ) be a linear map from V to V . Define [T ]β ∈
Mat∞(F ) to be the matrix whose ith column is [Tvi]β.
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(d) Prove that the map Ψ : L(V ) → Mat∞(F ) given by Ψ(T ) =

[T ]β is linear and injective, but not surjective, and explicitly

describe its image.
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Hint for 2. Start by computing the matrix of H with respect to the

“standard” basis {eij}. This matrix is not diagonal, but if you order

the elements of {eij} in the right way, the matrix will be block-diagonal

with blocks of size at most 2.
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Hint for 3(a). Show that if F is any field with char(F ) 6= 2, then for

any nonzero f ∈ F the equation x2 = f has either 2 or 0 solutions.
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Hint for 3(b). Rewrite the equation as 1 − ax2 = by2 and use a

counting argument (what you need from (a) is that more than half of

all elements of F are squares).
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Hint for 4. Let {w1, . . . , wm} be a basis of W , and assume that φ

from the proof of Lemma 3.4 is not surjective. Show that there exist

λ1, . . . , λm ∈ F , not all zero, such that
∑m

i=1 λiH(wi, v) = 0 for all

v ∈ V and deduce that H must be degenerate.


