
Homework #1. Due by 6pm on Saturday, Sep 4th

Problems

Note on hints: All hints are given at the end of the assignment, each

on a separate page. Problems (or parts of problems) for which hint is

available are marked with *.

Most of the problems below deal with concepts that have not been

introduced in class so far. The definitions of those concepts are given

on page 3. We denote by Matn(F ) the set of all n × n matrices over

F .

1. Let V = Pol2(R), the vector space of polynomials of degree at most

2 over R. Let β = {1, x, x2} and γ = {1, (x− 1), (x− 1)2}. Both β and

γ are bases of V (you do not need to verify this). Let T : V → V be

the differentiation map: T (f) = f ′.

(a) compute the matrix [T ]β directly from definition

(b) compute the matrix [T ]γ directly from definition

(c) now compute [T ]γ using your answer in (a) and the change of

basis formula.

2. In each of the following examples determine if H is a bilinear form

on V (make sure to justify your answer):

(a) V = Matn(F ) for some field F and n ∈ N and H(A,B) = AB.

(b) V = Matn(F ) for some field F and n ∈ N and H(A,B) =

(AB)1,1 (the (1,1)-entry of the matrix AB).

(c) V = F n for some field F and n ∈ N andH((x1, . . . , xn), (y1, . . . , yn)) =

x1 + y1.

3. As in problem 1, let V = Pol2(R), and define H : V × V → R by

H(f, g) =

1∫
0

f(x)g(x)dx.

Prove that H is a symmetric bilinear form and compute the matrix

[H]β (where again β = {1, x, x2}).
4. Let F be any field, n ∈ N and V = Matn(F ), the vector space of

n×n matrices over F . Let eij be the matrix whose (i, j)-entry is equal

to 1 and all other entries are 0. Then β = {eij : 1 ≤ i, j ≤ n} is a basis
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of V (you do not need to verify this). Define H : V × V → F by

H(A,B) = Tr(ABT )

(where BT is the transpose of B). Prove that H is a symmetric bilinear

form and compute the matrix [H]β (you can order β in any way you

like). Include all the relevant computations.

5. Let F be a field with char(F ) 6= 2, let V be a finite-dimensional

vector space over F , and let H be a bilinear form on V . Prove that H

can be uniquely written as H = H+ + H− where H+ is a symmetric

bilinear form on V and H− is an antisymmetric bilinear form on V .

6. Let F be any field and n ∈ N.

(a) Let V = F n (the standard n-dimensional vector space over F ).

Let D : V × V → F be the dot product form. Prove that D is

non-degenerate.

(b)* Now V be any n-dimensional vector space over F , β an ordered

basis for V and H a bilinear form on V . Prove that H is left

non-degenerate if and only if [H]β (the matrix of H with respect

to β) is invertible.

Note: (a) is a special case of (b); however, there is a natural way to

solve (b) using (a), so it does make sense to prove (a) first.

7. Let F be any field, n ∈ N, V = F n and {e1, . . . , en} the standard

basis of V . Define ρ : Sn → GL(V ) by (ρ(g))(ei) = eg(i). As discussed

in Lecture 1, the pair (ρ, V ) is a representation of Sn.

(a) Let V0 be the subspace of V consisting of all vectors whose sum

of coordinates is equal to 0:

V0 = {(x1, . . . , xn) ∈ V : x1 + . . .+ xn = 0}.

Prove that V0 is an Sn-invariant subspace of V , and therefore

(ρ, V0) is also a representation of Sn.

(b)* BONUS Now prove that the representation (ρ, V0) is irreducible,

that is, if W is any Sn-invariant subspace of V0, then W = 0 or

W = V0.
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Definitions

1. Characteristic of a ring. Let R be a ring with 1. The characteristic

of R, denoted char(R), is the smallest positive integer n such that

1 + . . .+ 1︸ ︷︷ ︸
n times

= 0 in R. If no such n exists, we define char(R) = 0.

For instance, char(Z) = char(Q) = char(R) = char(C) = 0, while

char(Zn) = n (where Zn = Z/nZ is the ring of congruence classes mod

n). There is a theorem saying that if F is a field, then char(F ) is either

0 or a prime number.

2. Let V be a vector space over any field. A bilinear form on V is a

map H : V × V → F which is linear in each variable, that is,

H(x+λy, z) = H(x, z)+λH(y, z) and H(x, y+λz) = H(x, y)+λH(x, z)

for all λ ∈ F, x, y, z ∈ V .

If V is finite-dimensional and β = {v1, . . . , vn} is an ordered basis of

V , the matrix of H with respect to β, denoted by [H]β is the n × n

matrix over F whose (i, j)-entry is H(vi, vj).

3. Let H be a bilinear form on a vector space V . Then H is called

(i) symmetric if H(x, y) = H(y, x) for all x, y ∈ V ;

(ii) antisymmetric if H(x, y) = −H(y, x) for all x, y ∈ V ;

(iii) left non-degenerate if for every nonzero x ∈ V there exists y ∈ V
with H(x, y) 6= 0.

(iv) right non-degenerate if for every nonzero x ∈ V there exists

y ∈ V with H(y, x) 6= 0.
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Hint for 6(b). Use the formulaH(v, w) = [v]Tβ [H]β[w]β (will be proved

in Lecture 3). Interpret the right-hand side of this formula as a dot

product and use 6(a).
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Hint for 7(b). Let W be an Sn-invariant subspace of V0, and assume

that W 6= 0. Our goal is to show that W = V0. First prove that W

must contain a nonzero vector w1 one of whose coordinates is zero.

Then use w1 to construct an element w2 ∈ W which has exactly two

nonzero coordinates and deduce that w1 is a nonzero scalar multiple of

ei − ej for some i 6= j. Finally, use w2 to prove that W = V0.


