Homework \#1. Due by 6pm on Saturday, Sep 4th Problems

Note on hints: All hints are given at the end of the assignment, each on a separate page. Problems (or parts of problems) for which hint is available are marked with *.

Most of the problems below deal with concepts that have not been introduced in class so far. The definitions of those concepts are given on page 3 . We denote by $\operatorname{Mat}_{n}(F)$ the set of all $n \times n$ matrices over F.

1. Let $V=\operatorname{Pol}_{2}(\mathbb{R})$, the vector space of polynomials of degree at most 2 over \mathbb{R}. Let $\beta=\left\{1, x, x^{2}\right\}$ and $\gamma=\left\{1,(x-1),(x-1)^{2}\right\}$. Both β and γ are bases of V (you do not need to verify this). Let $T: V \rightarrow V$ be the differentiation map: $T(f)=f^{\prime}$.
(a) compute the matrix $[T]_{\beta}$ directly from definition
(b) compute the matrix $[T]_{\gamma}$ directly from definition
(c) now compute $[T]_{\gamma}$ using your answer in (a) and the change of basis formula.
2. In each of the following examples determine if H is a bilinear form on V (make sure to justify your answer):
(a) $V=M a t_{n}(F)$ for some field F and $n \in \mathbb{N}$ and $H(A, B)=A B$.
(b) $V=\operatorname{Mat}_{n}(F)$ for some field F and $n \in \mathbb{N}$ and $H(A, B)=$ $(A B)_{1,1}$ (the (1,1)-entry of the matrix $\left.A B\right)$.
(c) $V=F^{n}$ for some field F and $n \in \mathbb{N}$ and $H\left(\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right)=$ $x_{1}+y_{1}$.
3. As in problem 1, let $V=\operatorname{Pol}_{2}(\mathbb{R})$, and define $H: V \times V \rightarrow \mathbb{R}$ by

$$
H(f, g)=\int_{0}^{1} f(x) g(x) d x
$$

Prove that H is a symmetric bilinear form and compute the matrix $[H]_{\beta}$ (where again $\beta=\left\{1, x, x^{2}\right\}$).
4. Let F be any field, $n \in \mathbb{N}$ and $V=\operatorname{Mat}_{n}(F)$, the vector space of $n \times n$ matrices over F. Let $e_{i j}$ be the matrix whose (i, j)-entry is equal to 1 and all other entries are 0 . Then $\beta=\left\{e_{i j}: 1 \leq i, j \leq n\right\}$ is a basis
of V (you do not need to verify this). Define $H: V \times V \rightarrow F$ by

$$
H(A, B)=\operatorname{Tr}\left(A B^{T}\right)
$$

(where B^{T} is the transpose of B). Prove that H is a symmetric bilinear form and compute the matrix $[H]_{\beta}$ (you can order β in any way you like). Include all the relevant computations.
5. Let F be a field with $\operatorname{char}(F) \neq 2$, let V be a finite-dimensional vector space over F, and let H be a bilinear form on V. Prove that H can be uniquely written as $H=H^{+}+H^{-}$where H^{+}is a symmetric bilinear form on V and H^{-}is an antisymmetric bilinear form on V.
6. Let F be any field and $n \in \mathbb{N}$.
(a) Let $V=F^{n}$ (the standard n-dimensional vector space over F). Let $D: V \times V \rightarrow F$ be the dot product form. Prove that D is non-degenerate.
(b)* Now V be any n-dimensional vector space over F, β an ordered basis for V and H a bilinear form on V. Prove that H is left non-degenerate if and only if $[H]_{\beta}$ (the matrix of H with respect to β) is invertible.
Note: (a) is a special case of (b); however, there is a natural way to solve (b) using (a), so it does make sense to prove (a) first.
7. Let F be any field, $n \in \mathbb{N}, V=F^{n}$ and $\left\{e_{1}, \ldots, e_{n}\right\}$ the standard basis of V. Define $\rho: S_{n} \rightarrow G L(V)$ by $(\rho(g))\left(e_{i}\right)=e_{g(i)}$. As discussed in Lecture 1, the pair (ρ, V) is a representation of S_{n}.
(a) Let V_{0} be the subspace of V consisting of all vectors whose sum of coordinates is equal to 0 :

$$
V_{0}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in V: x_{1}+\ldots+x_{n}=0\right\} .
$$

Prove that V_{0} is an S_{n}-invariant subspace of V, and therefore $\left(\rho, V_{0}\right)$ is also a representation of S_{n}.
(b)* BONUS Now prove that the representation $\left(\rho, V_{0}\right)$ is irreducible, that is, if W is any S_{n}-invariant subspace of V_{0}, then $W=0$ or $W=V_{0}$.

Definitions

1. Characteristic of a ring. Let R be a ring with 1 . The characteristic of R, denoted $\operatorname{char}(R)$, is the smallest positive integer n such that $\underbrace{1+\ldots+1}_{n \text { times }}=0$ in R. If no such n exists, we define $\operatorname{char}(R)=0$. For instance, $\operatorname{char}(\mathbb{Z})=\operatorname{char}(\mathbb{Q})=\operatorname{char}(\mathbb{R})=\operatorname{char}(\mathbb{C})=0$, while $\operatorname{char}\left(\mathbb{Z}_{n}\right)=n$ (where $\mathbb{Z}_{n}=\mathbb{Z} / n \mathbb{Z}$ is the ring of congruence classes mod $n)$. There is a theorem saying that if F is a field, then $\operatorname{char}(F)$ is either 0 or a prime number.
2. Let V be a vector space over any field. A bilinear form on V is a map $H: V \times V \rightarrow F$ which is linear in each variable, that is,
$H(x+\lambda y, z)=H(x, z)+\lambda H(y, z)$ and $H(x, y+\lambda z)=H(x, y)+\lambda H(x, z)$
for all $\lambda \in F, x, y, z \in V$.
If V is finite-dimensional and $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$ is an ordered basis of V, the matrix of H with respect to β, denoted by $[H]_{\beta}$ is the $n \times n$ matrix over F whose (i, j)-entry is $H\left(v_{i}, v_{j}\right)$.
3. Let H be a bilinear form on a vector space V. Then H is called
(i) symmetric if $H(x, y)=H(y, x)$ for all $x, y \in V$;
(ii) antisymmetric if $H(x, y)=-H(y, x)$ for all $x, y \in V$;
(iii) left non-degenerate if for every nonzero $x \in V$ there exists $y \in V$ with $H(x, y) \neq 0$.
(iv) right non-degenerate if for every nonzero $x \in V$ there exists $y \in V$ with $H(y, x) \neq 0$.

Hint for $\mathbf{6 (b)}$). Use the formula $H(v, w)=[v]_{\beta}^{T}[H]_{\beta}[w]_{\beta}$ (will be proved in Lecture 3). Interpret the right-hand side of this formula as a dot product and use 6(a).

Hint for $7(\mathbf{b})$. Let W be an S_{n}-invariant subspace of V_{0}, and assume that $W \neq 0$. Our goal is to show that $W=V_{0}$. First prove that W must contain a nonzero vector w_{1} one of whose coordinates is zero. Then use w_{1} to construct an element $w_{2} \in W$ which has exactly two nonzero coordinates and deduce that w_{1} is a nonzero scalar multiple of $e_{i}-e_{j}$ for some $i \neq j$. Finally, use w_{2} to prove that $W=V_{0}$.

