
Number Theory, Spring 2014.

Solutions to the second midterm

1. Let p be an odd prime, and let x ∈ Z be a primitive root mod p.

(a) (2 pts) Prove that x is a primitive root mod p2 ⇐⇒ xp−1 6≡ 1 mod p2.

(b) (4 pts) Let i ∈ [1, p− 1]. Use (a) and the lifting theorem to prove that

x or x + ip is a primitive root mod p2.

(c) (4 pts) Assume that p ≡ 1 mod 4. Prove that −x is also a primitive

root mod p.

(d) (2 pts) Use (a), (b) and (c) to prove that if p ≡ 1 mod 4, then there

exists y ∈ [1, p− 1] which is a primitive root mod p2.

Solution: (a) “⇒” Suppose that x is a primitive root mod p2, so [x]p2

has order |Up2| = p(p − 1). Hence for any 0 < m < p(p − 1) we have

([x]p2)
m 6= [1]p2 , so xm 6≡ 1 mod p2. In particular, xp−1 6≡ 1 mod p2.

“⇐” Conversely, suppose that xp−1 6≡ 1 mod p2. Since x is a primitive root

mod p, we have o([x]p) = p− 1.

Let a = o([x]p2). Since [x]ap2 = [1]p2 , we have [x]ap = [1]p, so p− 1 = o([x]p)

divides a. On the other hand, by Lagrange theorem, a divides |U |p2 =

p(p − 1). The only positive integers which are divisible by p − 1 and divide

p(p− 1) are p− 1 and p(p− 1).

Since xp−1 6≡ 1 mod p2, we know that a 6= p − 1. Thus, we must have

a = p(p− 1), whence [x]p2 is a generator of Up2 and so x is a primitive root

mod p2.

(b) Let f(t) = tp−1 − 1. Since f(x) ≡ 0 mod p while f ′(x) = (p − 1)xp−2

is not divisible by p, by the lifting theorem, there is unique y ∈ [0, p2) such

that y ≡ x mod p and f(y) ≡ 0 mod p2.

If y 6= x, then xp−1 6≡ 1 mod p2, so by (a), x is a primitive root mod p2.

And if y = x, then (x + ip)p−1 6≡ 1 mod p2 for any i ∈ [1, p− 1], so x + ip is

a primitive root mod p2.

(c) Let k = o([−x]p). We need to prove that k = p − 1. Suppose, on the

contrary, that k < p−1. By definition of the order we have (−x)k ≡ 1 mod p,
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so xk ≡ (−1)k mod p. If k is even, this would imply that o([x])p ≤ k < p−1,

contradicting the assumption that x is a primitive root mod p.

Thus, k is odd. Squaring both sides of xk ≡ (−1)k mod p, we get x2k ≡ 1

mod p, so [x]2kp = [1]p. Since [x]p is a generator of Up and |Up| = p − 1, we

deduce that (p − 1) | 2k. This is impossible since p ≡ 1 mod 4 while k is

odd.

(d) We know that there exists z ∈ [1, p − 1] which is a primitive root mod

p. If z is a primitive root mod p2, we are done. Suppose now that z is not

a primitive root mod p2. Then zp−1 ≡ 1 mod p2 by (a). Since p is even, we

have (−z)p−1 ≡ 1 mod p2, so again by (a), −z is not a primitive root mod

p2; on the other hand, by (c), −z is primitive root mod p. Thus, applying

(b) to x = −z, we conclude that −z + p is a primitive root mod p2. Since

−z + p ∈ [1, p− 1], the proof is complete.

2.

(a) (2 pts) Let n and d be positive integers. Let G be a finite cyclic group

of order n. What is the number of solutions to the equation gd = e in

G as a function of n and d? An answer is sufficient.

(b) (6 pts) Let p1, . . . , pk be distinct odd primes, let n = p1 . . . pk and define

mi = pi−1
2

. Suppose that m1, . . . ,mk are pairwise coprime. Prove that

for every prime p > 2, the congruence xp ≡ 1 mod n has at most p

reduced solutions.

(c) (4 pts) Prove that for any k ∈ N, there exist k primes satisfying the

hypothesis of (b).

Solution: (a) gcd(n, d).

(b) For a positive integer l denote by f(l) the number of reduced solutions

to xp ≡ 1 mod l. Since p1, . . . , pk are pairwise coprime, we have f(n) =

f(p1) . . . f(pk).

If q is prime, the number of reduced solutions to xp ≡ 1 mod q is equal

to the number of solutions to gp = e in Uq, which is a cyclic group of order

q− 1. Hence by (a) for each i we have f(pi) = gcd(p, pi− 1). Thus f(pi) = p

if p | (pi − 1) and f(pi) = 1 otherwise.

Since p is odd and the numbers p1−1
2

, . . . , pk−1
2

are pairwise coprime, there

is at most one i for which p | (pi − 1). Therefore, f(n) = f(p1) . . . f(pk) = 1

or p.

(c) We use induction on k. The statement trivially holds for k = 1. Now

suppose that k is arbitrary and we have constructed primes p1, . . . , pk such
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that the integers m1 = p1−1
2

, . . . ,mk = pk−1
2

are pairwise coprime. We shall

prove that there is a prime pk+1 such that mk+1 = pk+1−1
2

is coprime to

m1, . . . ,mk.

Let m = m1 . . .mk. Since gcd(2m,−1) = 1, by Dirichlet’s theorem, there

exists l ∈ N such that pk+1 = 2ml− 1 is prime. Then mk+1 = (2ml− 2)/2 =

ml − 1 is coprime to m, so in particular coprime to each of the numbers

m1, . . . ,mk.

3. (a) (3 pts) Let n ∈ N be odd, and suppose that the congruence x2 ≡ 2

mod n has a solution. Prove that n ≡ 1 or 7 mod 8.

Now let q be an odd prime. As in HW#8.2, define N = q if q ≡ 1 mod 4

and N = 4q if q ≡ 3 mod 4. If q ≡ 1 mod 4, define A = Qq, the group of

quadratic residues mod q (thought of as a subgroup of Uq) and B = Uq \ A.

If q ≡ 3 mod 4, define

A(1) = {[x]4q ∈ U4q : x ≡ 1 mod 4 and [x]q ∈ Qq},
A(2) = {[x]4q ∈ U4q : x ≡ 3 mod 4 and [x]q 6∈ Qq},

A = A(1) ∪ A(2) and B = U4q \ A.

(b) (3 pts) Prove that if p is an odd prime distinct from q, then(
q

p

)
=

{
1 if [p]N ∈ A
−1 if [p]N ∈ B

(c) (3 pts) Prove that A is a subgroup of UN .

(d) (3 pts) Use (b) and (c) to prove that there exists an integer r such that

the congruence x2 ≡ q mod n has no solutions for any odd integer n

satisfying n ≡ r mod N . Hint: your argument should be similar to

the one in (a) except that things will be less explicit.

Solution: (a) Let p be a prime divisor of n. Since n is odd, p is also

odd. Also, by assumption there exists x ∈ Z such that x2 ≡ 2 mod n, so

x2 ≡ 2 mod p as well and therefore by the formula for (2
p
) proved in class,

we conclude that p ≡ 1 or 7 mod 8.

Hence n is a product of primes congruent to 1 or 7 mod 8. Since the set

{[1]8, [7]8} is a subgroup of U8, it follows that n itself is congruent to 1 or 7

mod 8.

(b) If q ≡ 1 mod 4, then ( q
p
) = (p

q
), which by definition equals 1 if [p]q ∈ A

and −1 if [p]q ∈ B.

Now suppose that q ≡ 3 mod 4. Then ( q
p
) =

{
(p
q
) if p ≡ 1 mod 4

−(p
q
) if p ≡ 3 mod 4

Thus, ( q
p
) = 1 ⇐⇒ one of the following holds:
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(i) (p
q
) = 1 (that is, [p]q ∈ Qq) and p ≡ 1 mod 4

(ii) (p
q
) = −1 (that is, [p]q 6∈ Qq) and p ≡ 3 mod 4.

By definition, (i) holds ⇐⇒ [p]4q ∈ A(1) and (ii) holds ⇐⇒ [p]4q ∈ A(2).

Thus, ( q
p
) = 1 ⇐⇒ [p]4q ∈ A (and therefore, ( q

p
) = −1 ⇐⇒ [p]4q 6∈ A

⇐⇒ [p]4q ∈ B).

(c) We already know that Qq is a subgroup of Uq, so it suffices to consider

the case q ≡ 3 mod 4.

We shall use the following standard fact in group theory: if G is a finite

group and H a non-empty subset of G which is closed under group operation,

then H is necessarily a subgroup (that is, H is automatically closed under

inversion).

Thus, it suffices to prove that if [x]N ∈ A and [y]N ∈ A, then [xy]N ∈ A.

We consider four cases:

Case 1: [x]q, [y]q ∈ Qq and x ≡ y ≡ 1 mod 4. Then (x
q
) = (y

q
) = 1, so

(xy
q

) = (x
q
)(y

q
) = 1 (so [xy]q ∈ Qq) and xy ≡ 1 mod 4, hence [xy]4q ∈ A(1).

Case 2: [x]q, [y]q 6∈ Qq and x ≡ y ≡ 3 mod 4. Then (x
q
) = (y

q
) = −1,

so (xy
q

) = (−1)2 = 1 (so [xy]q ∈ Qq) and xy ≡ 3 · 3 ≡ 1 mod 4, hence

[xy]4q ∈ A(1).

Case 3: [x]q ∈ Qq, x ≡ 1 mod 4, [y]q 6∈ Qq and y ≡ 3 mod 4. Then

(xy
q

) = (x
q
)(y

q
) = 1 · (−1) = −1 (so [xy]q 6∈ Qq) and xy ≡ 3 mod 4, hence

[xy]4q ∈ A(2).

Case 4: [x]q 6∈ Qq, x ≡ 3 mod 4, [y]q ∈ Qq and y ≡ 1 mod 4. This case

is analogous to Case 3.

(d) Fix any integer r coprime to N such that [r]N 6∈ A. We claim that for any

n such that n ≡ r mod N there congruence x2 ≡ q mod n has no solution.

Suppose, on the contrary, that there exists n such that n ≡ r mod N and

x2 ≡ q mod n for some x.

Let p be an arbitrary prime divisor of n. Then p is odd (since n is odd)

and p is distinct from q (if p = q, then, since q | (n− r), we also have q | r, so

r is not coprime to N , which is a contradiction). Also, the congruence x2 ≡ q

mod p has a solution. Therefore, by definition ( q
p
) = 1, hence [p]N ∈ A by

(b).

Let pe11 . . . pess be the prime factorization of n. We just showed that [pi]N ∈
A for each i, and since A is a subgroup, we conclude that [n]N =

∏
[pi]

ei
N ∈ A.

On the other hand, since n ≡ r mod N and [r]N 6∈ A, we must also have

[n]N 6∈ A, which is a contradiction.
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4. (a) (4 pts) Let p1, . . . , pk be distinct primes, and let ε1, . . . , εk be integers

each of which is equal to ±1. Prove that there exists a prime p such that(
pi
p

)
= εi for each i. Hint: your computation will be easier if you impose

an additional restriction on p right away. Problem 3 is relevant here.

Given an integer n and a prime p > n, define fp(n) to be the number of

integers in the interval [1, n] which are quadratic residues mod p. Define

f(n) to be the smallest possible value of fp(n) as p ranges over all possible

primes > n.

We will say that n is square-friendly if f(n) ≥ n/2, that is, for every prime

p > n, at least half of integers in [1, n] are quadratic residues mod p (note

that different integers may serve as quadratic residues for different p). For

instance, 4 is square-friendly since
(

1
p

)
=
(

4
p

)
= 1 for all p, so f(4) ≥ 2.

On the other hand, 3 is not square-friendly since
(

2
19

)
=
(

3
19

)
= −1, so

f(3) ≤ f19(3) ≤ 1.

(b) (4 pts) Prove that 10 is square-friendly, that is, f(10) ≥ 5. Hint: This

can be proved by case-by-case analysis. If you know the value
(

q
p

)
for

every prime q < 10, then you know
(

n
p

)
for all n ≤ 10.

(c) (4 pts) Prove that 100 is not square-friendly, that is, f(100) < 50. If

you cannot prove this, try to prove as good an upper bound for f(100)

as you can. Hint: start by listing all primes between 1 and 100 (there

are 25 of them).

Solution: (a) First, we observe that Dirichlet’s theorem on primes in arith-

metic progressions can be reformulated as follows. Suppose that integers b

and r are coprime. Then there exists a prime p such that p ≡ r mod b. We

shall use Dirichlet’s theorem in this form.

For simplicity, we first consider the case when none of pi’s is equal to 2.

For each 1 ≤ i ≤ k choose ri ∈ Z such that ( ri
pi

) = εi. By CRT there exists

r ∈ Z such that r ≡ ri mod pi for each i and r ≡ 1 mod 4.

Now let b = 4p1 . . . pk. Then by construction r is coprime to 4 and each

pi, so r is coprime to b. Hence, by Dirichlet’s theorem there exists a prime p

such that p ≡ r mod b. We claim that p has required properties.

Indeed, by construction, p ≡ 1 mod 4 and p ≡ ri mod pi for each i,

whence (
pi
p

)
=

(
p

pi

)
=

(
ri
pi

)
= εi,

as desired.
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In the case when one of the primes pi is equal to 2 (WOLOG p1 = 2)

we use essentially the same argument except that we slightly modify the

definition of r. First we choose ri ∈ Z for 2 ≤ i ≤ k such that ( ri
pi

) = εi and

then define r to be any integer such that r ≡ ri mod pi for each 2 ≤ i ≤ k

and r ≡
{

1 mod 8 if ε1 = 1
5 mod 8 if ε1 = −1.

(b) Let p be any prime > 10. Since 1, 4 and 9 are perfect squares, we have

(1
p
) = (4

p
) = (9

p
) = 1, so all we need to show is among 2, 3, 5, 6, 7, 8, 10 there

are at least two quadratic residues mod p.

If (2
p
) = 1, then (8

p
) = (2

p
)3 = 1, so 2 and 8 are quadratic residues mod p.

If (2
p
) = −1, then (6

p
) = −(3

p
), so either (3

p
) = 1 or (6

p
) = 1 and similarly

(5
p
) = 1 or (10

p
) = 1. Hence at least two of the integers 3, 5, 6, 10 are quadratic

residues mod p.

(c) We shall give several different solutions.

Let p1, . . . , p25 be all the primes ≤ 100. By (a), for any sequence ε1, . . . , ε25
of 1’s and −1’s, there exists a prime p such that (pi

p
) = εi for each i. Note

that if we know the values (pi
p

) for 1 ≤ i ≤ 25, then (by multiplicativity

of the Legendre symbol in the numerator), we know the values (n
p
) for all

1 ≤ n ≤ 100. Thus, we only need to find a sequence of εi’s which forces more

than 50 integers in [1, 100] to be quadratic non-residues mod p.

One possibility is to take εi = −1 for each i. Then for n ∈ [1, 100] we have

(n
p
) = (−1)f(n) where f(n) is the number of distinct prime divisors of n (so

(n
p
) = −1 ⇐⇒ f(n) is odd). By direct computation there are 51 values of

n ∈ [1, 100] for which f(n) is odd.

A slightly more elegant choice is to take ε1 = 1 and εi = −1 for 2 ≤ i ≤ 25

(that is, require that (2
p
) = 1 and (pi

p
) = −1 for 2 ≤ i ≤ 25). Then (n

p
) = −1

whenever n = 2jpi for some j and 2 ≤ i ≤ 25.

Thus, to get a quadratic non-residue mod p, we can take n to be any of

the pi’s (24 choices) or n = 2pi where pi is a prime between 3 and 50 (14

choices) or n = 4pi where pi is a prime between 3 and 25 (8 choices) or

n = 8pi where pi is a prime between 3 and 12 (4 choices) or n = 16pi where

pi is a prime between 3 and 6 (2 choices) or n = 32 · 3 (1 choice). In total we

have 24 + 14 + 8 + 4 + 2 + 1 = 53 > 50 choices.

We finish with what is perhaps the most elegant solution, given in one of

the exam papers. The idea is very simple. Let p be a prime which is larger

than but close to 100. Then we know that among the integers 1, . . . , p − 1

precisely half are quadratic residues mod p. Hence if we manage to prove

that more than half of elements in [101, p − 1] are quadratic residues mod

p (which can be checked manually if p is close to 100), then automatically
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less than half of elements in [1, 100] are quadratic residues mod p, so p is not

square-friendly.

Let p = 109. Then by direct computation(
102

109

)
=

(
104

109

)
=

(
105

109

)
=

(
106

109

)
=

(
108

109

)
= 1,

so 5 elements of [101, 108] are quadratic residues mod p, so at most 49 ele-

ments of [1, 100] are quadratic residues mod p.
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