Number Theory, Spring 2014.
Solutions to the second midterm

1. Let p be an odd prime, and let x € Z be a primitive root mod p.
(a) (2 pts) Prove that z is a primitive root mod p? <= zP~!' #1 mod p*.

(b) (4 pts) Let i € [1,p —1]. Use (a) and the lifting theorem to prove that
x or T + ip is a primitive root mod p?.

(c) (4 pts) Assume that p =1 mod 4. Prove that —x is also a primitive
root mod p.

(d) (2 pts) Use (a), (b) and (c) to prove that if p = 1 mod 4, then there
exists y € [1,p — 1] which is a primitive root mod p?.

Solution: (a) “=” Suppose that x is a primitive root mod p?, so [z],
has order |Uy| = p(p — 1). Hence for any 0 < m < p(p — 1) we have
([x]p2)™ # [1],2, so 2™ # 1 mod p?. In particular, 2P~* £ 1 mod p*.

“«<” Conversely, suppose that 2P~! £ 1 mod p?. Since z is a primitive root
mod p, we have o([z],) =p — 1.

Let a = o([z],2). Since [2]}, = [1],2, we have [z]} = [1],, so p — 1 = o([z],)
divides a. On the other hand, by Lagrange theorem, a divides |U|,2 =
p(p — 1). The only positive integers which are divisible by p — 1 and divide
p(p—1) are p—1 and p(p — 1).

Since 277t # 1 mod p?, we know that a # p — 1. Thus, we must have
a = p(p — 1), whence [z],2 is a generator of Uy and so z is a primitive root
mod p?.

(b) Let f(t) = t*~! — 1. Since f(z) = 0 mod p while f'(z) = (p — 1)zP2
is not divisible by p, by the lifting theorem, there is unique y € [0, p*) such
that y = mod p and f(y) =0 mod p?.

If y # x, then 2P~' # 1 mod p?, so by (a), = is a primitive root mod p?.
And if y = z, then (x +ip)?~! # 1 mod p? for any i € [1,p — 1], so x +ip is
a primitive root mod p?.

(c) Let k = o([—x],). We need to prove that £ = p — 1. Suppose, on the
contrary, that k < p—1. By definition of the order we have (—z)* =1 mod p,
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so 2% = (—1)* mod p. If k is even, this would imply that o([z]), < k < p—1,

contradicting the assumption that z is a primitive root mod p.

Thus, k is odd. Squaring both sides of 2% = (—=1)* mod p, we get 2% =
mod p, so [z]2F = [1],. Since [z], is a generator of U, and |U,| = p — 1, we

deduce that (p — 1) | 2k. This is impossible since p = 1 mod 4 while k is
odd.

(d) We know that there exists z € [1,p — 1] which is a primitive root mod
p. If z is a primitive root mod p?, we are done. Suppose now that z is not
a primitive root mod p?. Then 277! =1 mod p? by (a). Since p is even, we
have (—z)P"!' =1 mod p?, so again by (a), —z is not a primitive root mod
p?; on the other hand, by (c), —z is primitive root mod p. Thus, applying
(b) to x = —2z, we conclude that —z + p is a primitive root mod p?. Since
—z+p € [1,p— 1], the proof is complete.

2.

(a) (2 pts) Let n and d be positive integers. Let G be a finite cyclic group
of order n. What is the number of solutions to the equation ¢¢ = e in
G as a function of n and d? An answer is sufficient.

(b) (6 pts) Let p1, ..., pr be distinct odd primes, let n = p; ... py and define

_1 . . .
m; = B=—=_ Suppose that mq,...,m; are pairwise coprime. Prove that

2
for every prime p > 2, the congruence 2 =1 mod n  has at most p

reduced solutions.

(c) (4 pts) Prove that for any k£ € N, there exist k primes satisfying the
hypothesis of (b).

Solution: (a) ged(n,d).

(b) For a positive integer | denote by f(I) the number of reduced solutions
to 2 = 1 mod [. Since py,...,p; are pairwise coprime, we have f(n) =
f®1) - (o)

If ¢ is prime, the number of reduced solutions to 27 = 1 mod ¢ is equal
to the number of solutions to ¢¥ = e in U,, which is a cyclic group of order
g — 1. Hence by (a) for each i we have f(p;) = ged(p,p; —1). Thus f(p;) =p
if p| (pi—1) and f(p;) = 1 otherwise.

. . -1 -1 . . .
Since p is odd and the numbers =, ..., P&= are pairwise coprime, there

is at most one i for which p | (p; — 1). Therefore, f(n) = f(p1)... f(pr) =1
or p.

(c) We use induction on k. The statement trivially holds for £ = 1. Now
suppose that k is arbitrary and we have constructed primes py, ..., py such



that the integers m; = p12_1, Ca My = p’“z_l

prove that there is a prime pgi; such that mp,; =

are pairwise coprime. We shall

Pr+1—1
2

is coprime to
mq,...,Mg.

Let m = my ...my. Since gcd(2m,—1) = 1, by Dirichlet’s theorem, there
exists [ € N such that py; = 2ml — 1 is prime. Then myq = (2ml —2)/2 =
ml — 1 is coprime to m, so in particular coprime to each of the numbers
mq,...,Mg.

3. (a) (3 pts) Let n € N be odd, and suppose that the congruence z? = 2
mod n has a solution. Prove that n =1 or 7 mod 8.

Now let ¢ be an odd prime. As in HW#38.2, define N = ¢ if ¢ =1 mod 4
and N =4¢if ¢ =3 mod 4. If g =1 mod 4, define A = @), the group of
quadratic residues mod ¢ (thought of as a subgroup of U,) and B = U, \ A.
If g =3 mod 4, define

A1) ={[z]sg €Usy: x =1 mod 4 and [z], € Q,},
A2) ={[z]sg € Usy: =3 mod 4 and [z], € Qy},

A=A(1)UA(2) and B="U,, \ A.
(b) (3 pts) Prove that if p is an odd prime distinct from ¢, then

¢\ [1 if[pyveA
P B -1 if [p]N €EB
(¢) (3 pts) Prove that A is a subgroup of Uy.

(d) (3 pts) Use (b) and (c) to prove that there exists an integer r such that
the congruence x2 = ¢ mod n has no solutions for any odd integer n
satisfying n = r mod N. Hint: your argument should be similar to
the one in (a) except that things will be less explicit.

Solution: (a) Let p be a prime divisor of n. Since n is odd, p is also
odd. Also, by assumption there exists z € Z such that 22> = 2 mod n, so
22 = 2 mod p as well and therefore by the formula for (%) proved in class,
we conclude that p =1 or 7 mod 8.

Hence n is a product of primes congruent to 1 or 7 mod 8. Since the set
{[1]s, [7]s} is a subgroup of Us, it follows that n itself is congruent to 1 or 7

mod 8.

(b) If ¢ =1 mod 4, then (%) = (£), which by definition equals 1 if [p], € A
and —1 if [p], € B.

(£) if p=1 mod 4

Now suppose that ¢ = 3 mod 4. Then (]%) = { 2) ifp=3 mod 4

Q

Thus, () =1 <= one of the following holds:

3



(i) (£) =1 (that is, [p]; € @¢) and p=1 mod 4
(ii) (2) = —1 (that is, [pl; € Q) and p =3 mod 4.

By definition, (i) holds <= [pls, € A(1) and (ii) holds <= [p|s, € A(2).
Thus, (1) =1 <= [plyy € A (and therefore, (1) = -1 <= [plsyy ¢ A
< [plag € B).

(c) We already know that @, is a subgroup of U,, so it suffices to consider
the case ¢ =3 mod 4.

We shall use the following standard fact in group theory: if GG is a finite
group and H a non-empty subset of G which is closed under group operation,
then H is necessarily a subgroup (that is, H is automatically closed under
inversion).

Thus, it suffices to prove that if [z]y € A and [y|y € A, then [zy|y € A.
We consider four cases:

Case 1: [z]g, [yly € Qg and 2 =y =1 mod 4. Then (7) = (£) =1, so
(%) = (9)(£) =1 (so [zy], € Q) and zy =1 mod 4, hence [zyls, € A(1).

Case 2: [z, [ lq §Z Qg and v =y =3 mod 4. Then (7) = (¥) = -1,

o (%)= (- 1)?2 =1 (so [zy], € Q) and zy = 3-3 = 1 mod 4, hence

[xy]4q € A(1).

Case 3: [z], € Qg x =1 mod 4, [y], € Q, and y = 3 mod 4. Then
(5 =)&) =1-(-1) = -1 (so [zyl, & Q) and zy = 3 mod 4, hence
(ol € A2

Case 4: [z]; & Qg v =3 mod 4, [y], € @, and y =1 mod 4. This case
is analogous to Case 3.

(d) Fix any integer r coprime to N such that [r]y & A. We claim that for any

n such that n = r mod N there congruence 22 = ¢ mod n has no solution.

Suppose, on the contrary, that there exists n such that n = r mod N and
2?2 = ¢ mod n for some x.

Let p be an arbitrary prime divisor of n. Then p is odd (since n is odd)
and p is distinct from ¢ (if p = ¢, then, since ¢ | (n —7), we also have ¢ | r, so
r is not coprime to N, which is a contradiction). Also, the congruence z* = ¢
mod p has a solution. Therefore, by definition (%) = 1, hence [p]y € A by
(b).

Let pi' ... p% be the prime factorization of n. We just showed that [p;|y €
A for each ¢, and since A is a subgroup, we conclude that [n]y = [[[pi]% € A.
On the other hand, since n = r mod N and [r]y € A, we must also have
[n]n & A, which is a contradiction.



4. (a) (4 pts) Let py, ..., px be distinct primes, and let 1, ..., e, be integers

each of which is equal to +1. Prove that there exists a prime p such that

Pi
p
an additional restriction on p right away. Problem 3 is relevant here.

) = g; for each 7. Hint: your computation will be easier if you impose

Given an integer n and a prime p > n, define f,(n) to be the number of
integers in the interval [1,n] which are quadratic residues mod p. Define
f(n) to be the smallest possible value of f,(n) as p ranges over all possible
primes > n.

We will say that n is square-friendly if f(n) > n/2, that is, for every prime
p > n, at least half of integers in [1,n] are quadratic residues mod p (note
that different integers may serve as quadratic residues for different p). For

instance, 4 is square-friendly since <%> = (%) =1 for all p, so f(4) > 2.
On the other hand, 3 is not square-friendly since (3) = (3) = —1, so

f(3) < fio(3) < 1. 19 19

(b) (4 pts) Prove that 10 is square-friendly, that is, f(10) > 5. Hint: This
can be proved by case-by-case analysis. If you know the value <g) for

every prime ¢ < 10, then you know <%) for all n < 10.

(c) (4 pts) Prove that 100 is not square-friendly, that is, f(100) < 50. If
you cannot prove this, try to prove as good an upper bound for f(100)
as you can. Hint: start by listing all primes between 1 and 100 (there
are 25 of them).

Solution: (a) First, we observe that Dirichlet’s theorem on primes in arith-
metic progressions can be reformulated as follows. Suppose that integers b
and r are coprime. Then there exists a prime p such that p =r mod b. We
shall use Dirichlet’s theorem in this form.

For simplicity, we first consider the case when none of p;’s is equal to 2.
For each 1 < i < k choose r; € Z such that (;—) = ¢;. By CRT there exists
r € Z such that » = r; mod p; for each i and r =1 mod 4.

Now let b = 4p; ...pg. Then by construction r is coprime to 4 and each
Pi, so r is coprime to b. Hence, by Dirichlet’s theorem there exists a prime p
such that p =r mod b. We claim that p has required properties.

Indeed, by construction, p = 1 mod 4 and p = r; mod p; for each 1,

()-()-()

whence

as desired.



In the case when one of the primes p; is equal to 2 (WOLOG p; = 2)
we use essentially the same argument except that we slightly modify the
definition of 7. First we choose r; € Z for 2 < i < k such that (3t) = ¢; and
then define r to be any integer such that » = r; mod p; for each 2 <1 < k
andrE{ 1 mod8 ife =1

5 mod 8 ife =—1.
(b) Let p be any prime > 10. Since 1,4 and 9 are perfect squares, we have
(%) = (%) = (g) =1, so all we need to show is among 2,3,5,6,7,8, 10 there
are at least two quadratic residues mod p.

If (2) = 1, then () = (2)° = 1, s0 2 and 8 are quadratic residues mod p.

If (%) = —1, then (g) = —(%), so either (%) =1or (g) = 1 and similarly
(g) =1lor (%) = 1. Hence at least two of the integers 3, 5, 6, 10 are quadratic
residues mod p.

(c) We shall give several different solutions.

Let py, ..., pes be all the primes < 100. By (a), for any sequence €1, . .., €95
of 1’'s and —1’s, there exists a prime p such that (%) = ¢, for each i. Note
that if we know the values (2) for 1 < ¢ < 25, then (by multiplicativity
of the Legendre symbol in the numerator), we know the values (%) for all
1 < n < 100. Thus, we only need to find a sequence of ¢;’s which forces more
than 50 integers in [1,100] to be quadratic non-residues mod p.

One possibility is to take e; = —1 for each i. Then for n € [1,100] we have
(%) = (=1)/™ where f(n) is the number of distinct prime divisors of n (so
(%) =—1 <= f(n)is odd). By direct computation there are 51 values of
n € [1,100] for which f(n) is odd.

A slightly more elegant choice is to take ey = 1 and g; = —1 for 2 < < 25
(that is, require 'that (%) =land (&) = —1for 2 <:<25). Then (}) = -1
whenever n = 2/p; for some j and 2 < i < 25.

Thus, to get a quadratic non-residue mod p, we can take n to be any of
the p;’s (24 choices) or n = 2p; where p; is a prime between 3 and 50 (14
choices) or n = 4p; where p; is a prime between 3 and 25 (8 choices) or
n = 8p; where p; is a prime between 3 and 12 (4 choices) or n = 16p; where
pi is a prime between 3 and 6 (2 choices) or n = 32-3 (1 choice). In total we

have 24 +14 +8 +4 + 2 + 1 = 53 > 50 choices.

We finish with what is perhaps the most elegant solution, given in one of
the exam papers. The idea is very simple. Let p be a prime which is larger
than but close to 100. Then we know that among the integers 1,...,p —1
precisely half are quadratic residues mod p. Hence if we manage to prove
that more than half of elements in [101,p — 1] are quadratic residues mod
p (which can be checked manually if p is close to 100), then automatically



less than half of elements in [1,100] are quadratic residues mod p, so p is not
square-friendly.

Let p = 109. Then by direct computation

102\  [/104\ (105) (106 [108)\ ]

109/ \109) \109/) \109) \109)
so b elements of [101, 108] are quadratic residues mod p, so at most 49 ele-
ments of [1,100] are quadratic residues mod p.



