
Number Theory, Spring 2014. Midterm #2.

Due Wednesday, April 16th in class

Directions: Provide complete arguments (do not skip steps). State clearly

and FULLY any result you are referring to. Partial credit for incorrect solu-

tions, containing steps in the right direction, may be given. If you are unable

to solve a problem (or a part of a problem), you may still use its result to

solve a later part of the same problem or a later problem in the exam.

Scoring system: Exam consists of 4 problems. Each of them is worth

12 points. If s1, s2, s3, s4 are your individual scores, your total is s1 + s2 +

s3 + s4−min{4, s1, s2, s3, s4}. Thus the maximal possible total is 44, but the

score of 40 counts as 100%.

Rules: You are NOT allowed to discuss midterm problems with anyone

else except me. You may ask me any questions about the problems (e.g. if

the formulation is unclear), but I may only provide minor hints. You may

freely use your class notes, previous homework assignments, and the class

textbook by Jones and Jones. The use of other books or any online sources

is not allowed.

Important note: You are allowed to use the full statement of Dirichlet’s

theorem on primes in arithmetic progressions (not just the special cases we

proved in class/homework). Hint: you will need to use Dirichlet’s theorem

in two different problems.

1. Let p be an odd prime, and let x ∈ Z be a primitive root mod p.

(a) (2 pts) Prove that x is a primitive root mod p2 ⇐⇒ xp−1 6≡ 1 mod p2.

(b) (4 pts) Let i ∈ [1, p−1]. Use (a) and the lifting theorem to prove that x

or x+ ip is a primitive root mod p2. Your solution should be very short

and involve very few computations – solutions imitating the proof of

Theorem 6.7(b) in the book will not be accepted.

(c) (4 pts) Assume that p ≡ 1 mod 4. Prove that −x is also a primitive

root mod p.

(d) (2 pts) Use (a), (b) and (c) to prove that if p ≡ 1 mod 4, then there

exists y ∈ [1, p− 1] which is a primitive root mod p2.
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2.

(a) (2 pts) Let n and d be positive integers. Let G be a finite cyclic group

of order n. What is the number of solutions to the equation gd = e in

G as a function of n and d? An answer is sufficient.

(b) (6 pts) Let p1, . . . , pk be distinct odd primes, let n = p1 . . . pk and define

mi = pi−1
2

. Suppose that m1, . . . ,mk are pairwise coprime. Prove that

for every prime p > 2, the congruence xp ≡ 1 mod n has at most p

reduced solutions.

(c) (4 pts) Prove that for any k ∈ N, there exist k primes satisfying the

hypothesis of (b). Hint: do this inductively – assume that p1, . . . , pk
have already been constructed and argue that another prime pk+1 can

be added to this collection so that the properties are preserved.

3. (a) (3 pts) Let n ∈ N be odd, and suppose that the congruence x2 ≡ 2

mod n has a solution. Prove that n ≡ 1 or 7 mod 8. Warning: n is not

necessarily prime.

Now let q be an odd prime. As in HW#8.2, define N = q if q ≡ 1 mod 4

and N = 4q if q ≡ 3 mod 4. If q ≡ 1 mod 4, define A = Qq, the group of

quadratic residues mod q (thought of as a subgroup of Uq) and B = Uq \ A.

If q ≡ 3 mod 4, define

A(1) = {[x]4q ∈ U4q : x ≡ 1 mod 4 and [x]q ∈ Qq},
A(2) = {[x]4q ∈ U4q : x ≡ 3 mod 4 and [x]q 6∈ Qq},

A = A(1) ∪ A(2) and B = U4q \ A.

(b) (3 pts) Prove that if p is an odd prime distinct from q, then(
q

p

)
=

{
1 if [p]N ∈ A
−1 if [p]N ∈ B

Hint: Consider separately the cases q ≡ 1 mod 4 (easier case) and

q ≡ 3 mod 4 (harder case).

(c) (3 pts) Prove that A is a subgroup of UN .

(d) (3 pts) Use (b) and (c) to prove that there exists an integer r such that

the congruence x2 ≡ q mod n has no solutions for any odd integer n

satisfying n ≡ r mod N . Hint: your argument should be similar to

the one in (a) except that things will be less explicit.
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4. (a) (4 pts) Let p1, . . . , pk be distinct primes, and let ε1, . . . , εk be integers

each of which is equal to ±1. Prove that there exists a prime p such that(
pi
p

)
= εi for each i. Hint: your computation will be easier if you impose

an additional restriction on p right away. Problem 3 is relevant here.

Given an integer n and a prime p > n, define fp(n) to be the number of

integers in the interval [1, n] which are quadratic residues mod p. Define

f(n) to be the smallest possible value of fp(n) as p ranges over all possible

primes > n.

We will say that n is square-friendly if f(n) ≥ n/2, that is, for every prime

p > n, at least half of integers in [1, n] are quadratic residues mod p (note

that different integers may serve as quadratic residues for different p). For

instance, 4 is square-friendly since
(

1
p

)
=

(
4
p

)
= 1 for all p, so f(4) ≥ 2.

On the other hand, 3 is not square-friendly since
(

2
19

)
=

(
3
19

)
= −1, so

f(3) ≤ f19(3) ≤ 1.

(b) (4 pts) Prove that 10 is square-friendly, that is, f(10) ≥ 5. Hint: This

can be proved by case-by-case analysis. If you know the value
(

q
p

)
for

every prime q < 10, then you know
(

n
p

)
for all n ≤ 10.

(c) (4 pts) Prove that 100 is not square-friendly, that is, f(100) < 50. If

you cannot prove this, try to prove as good an upper bound for f(100)

as you can. Hint: start by listing all primes between 1 and 100 (there

are 25 of them).
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