Solutions to the first midterm from Spring 2013.

1. Since 3, 5 and 7 are pairwise coprime, we can use the standard algorithm
from the proof of CRT. We need to find integers z1, 2o and z3 satisfying the
congruences 5-7-z1 =1 mod3, 3:-7-22=1 modband 3-5-23 =1
mod 7. Then zg = 2(5-7z1) + 3(3 - T2z2) + 5(3 - 5z3) is a solution, and the
general solution is z = xy + 105k with k € Z.

The above congruences simplify to 2z; = 1 mod 3, 22 = 1 mod 5 and
z3 = 1 mod 7, so we can set z; = 2 and 2z, = 23 = 1 which gives us a
solution xy = 140 + 63 4+ 75 = 278. The general solution is z = 278 + 105k.
We can find the smallest positive solution by starting with 278 and then
subtracting 105 repeatedly until we get a non-positive solution. We have
278 — 2 - 105 = 68 > 0 while 278 — 3 - 105 < 0, so x = 68 is the smallest
positive solution.

2. By Fermat’s little theorem, for any prime p and any = with p { z we have
27 = 1 mod p, so (zP71/2)2 = 1 mod p, and therefore 2P~1/2 = £1
mod p. And if p | z, then of course z®~1/2 =0 mod p.

Observing that 11 = (23 —1)/2, we reduce both sides of the original equation
mod p = 23. The right-hand side is clearly congruent to 11. On the other
hand, as shown above, ' = 0 or 1 mod 23 for any z, so the left-hand
side is congruent to ¢ for some —10 < ¢ < 10. None of the numbers in this
interval is congruent to 11 mod 23, so we reached a contradiction.

3. We begin by observing that

(i) given k € N, we have ¥ = 1 mod 120 if and only if [z]7% = [1]i20 in
VADY

(ii) an integer x is coprime to 120 if and only if [2]120 € Ujag.

In view of (i) and (ii), the number m we are asked to find in this problem is
simply exp(Ujg), the exponent of Uyg.
It is easy to check that for any finite groups G4y, ..., Gy we have

exp(Gy X ... x Gy) = LCM (exp(Gy), .. .,exp(Gg)).
By Corollary 8.3 from class, Ujgg = Uz x Us x Ug, so
m = LCM (exp(Us), exp(Us), exp(Us)).
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We know that the groups Us and Us are cyclic of orders 2 and 4, respectively,
so exp(Us) = 2 and exp(Us) = 4. The group Us has 3 non-identity elements
3]s, [5]s and [7]s, all of which have order 2, so exp(Us) = 2. Therefore,
m = LCM(2,4,2) = 4.

4. Let f(x) = 2% — a®x® + p%. We start by solving the congruence f(z) =0
mod p. We get p | (z*—a?z?) = z*(z—a?),sop | x or p | (x—a?); equivalently,
2 = 0 or a®> mod p. To determine possible lifts of these solutions, we evaluate
f'(0) and f'(a?).

We have f'(z) = 322 — 2a’z, so f'(a?) = 3a* — 2a* = a* £ 0 mod p since
p1a. Thus, z = a? lifts to a unique reduced solution to f(z) = 0 mod p*
for any k; in particular, this is true for k = 3.

On the other hand, f/(0) = 0, so we cannot determine the number of lifts
of x = 0 right away. Potential lifts of 0 have the form z = pk. Rather than
starting with solving f(z) = 0 mod p?, we plug in = pk directly into the
congruence f(z) =0 mod p?.

We get (pk)® — a?(pk)? + p?> = 0 mod p®. This simplifies to (ak)? = 1
mod p, which is equivalent to ak = £1 mod p. Since ged(a,p) = 1, each of
the congruences ak =1 mod p and ak = —1 mod p has unique solution in
the interval [0, p — 1], call them ko and ki; hence an arbitrary solution has
the form k = ky + pn or k = ko + pn with n € Z. Moreover, k; # ky mod p
since a(ky — ko) = aky —aky =1 —(—1) =2 mod p and p is odd, so these
two families are distinct.

The corresponding solutions to f(z) =0 mod p? are x = pk; + p*n and
x = pky+p*n. We may be tempted to say that there are two reduced solutions
(namely pk; and pks), but remember that we are solving f(z) =0 mod p?
(not mod p?), so reduced solutions are the ones in the interval [0,p* — 1].
Since 0 < ki, ks < p — 1 by construction, the number pk; + p*n (for i = 1,2)
lies in the interval [0, p® — 1] if and only if 0 <n <p — 1.

Thus, the number of reduced solutions to f(z) = 0 mod p* satisfying
x =0 mod pisequal to 2p. Therefore, the total number of reduced solutions
to f(x) =0 mod p? is equal to 2p + 1.

5. Let pi*...pi* be a prime factorization of n. We will show that if all a;
are even, then \/n is an integer, and if at least one a; is odd, then /n is
irrational.

The first statement is clear: if a; = 2b; for some b; € N for each i, then
vn=pt. e

Now suppose that a; is odd for some i. Assume that y/n is rational, so



Vn = ? for some e, f € N. Multiplying both sides by f and squaring, we get
e? = f*n. Applying the function ord,, to both sides and using the equality
ordy, (xy) = ordy,(x) + ord,, (y), we get 2ord,,(e) = ord,,(n) + 2ord,,(f) =
a; + 2ordy,(f). Therefore, a; = 2ord,,(e) — 20rd,,(f) is even, contrary to our

assumption. Hence, y/n is irrational.



