
Solutions to the first midterm from Spring 2013.

1. Since 3, 5 and 7 are pairwise coprime, we can use the standard algorithm

from the proof of CRT. We need to find integers z1, z2 and z3 satisfying the

congruences 5 · 7 · z1 ≡ 1 mod 3, 3 · 7 · z2 ≡ 1 mod 5 and 3 · 5 · z3 ≡ 1

mod 7. Then x0 = 2(5 · 7z1) + 3(3 · 7z2) + 5(3 · 5z3) is a solution, and the

general solution is x = x0 + 105k with k ∈ Z.

The above congruences simplify to 2z1 ≡ 1 mod 3, z2 ≡ 1 mod 5 and

z3 ≡ 1 mod 7, so we can set z1 = 2 and z2 = z3 = 1 which gives us a

solution x0 = 140 + 63 + 75 = 278. The general solution is x = 278 + 105k.

We can find the smallest positive solution by starting with 278 and then

subtracting 105 repeatedly until we get a non-positive solution. We have

278 − 2 · 105 = 68 > 0 while 278 − 3 · 105 < 0, so x = 68 is the smallest

positive solution.

2. By Fermat’s little theorem, for any prime p and any x with p - x we have

xp−1 ≡ 1 mod p, so (x(p−1)/2)2 ≡ 1 mod p, and therefore x(p−1)/2 ≡ ±1

mod p. And if p | x, then of course x(p−1)/2 ≡ 0 mod p.

Observing that 11 = (23−1)/2, we reduce both sides of the original equation

mod p = 23. The right-hand side is clearly congruent to 11. On the other

hand, as shown above, x11 ≡ 0 or ±1 mod 23 for any x, so the left-hand

side is congruent to c for some −10 ≤ c ≤ 10. None of the numbers in this

interval is congruent to 11 mod 23, so we reached a contradiction.

3. We begin by observing that

(i) given k ∈ N, we have xk ≡ 1 mod 120 if and only if [x]m120 = [1]120 in

Z120

(ii) an integer x is coprime to 120 if and only if [x]120 ∈ U120.

In view of (i) and (ii), the number m we are asked to find in this problem is

simply exp(U120), the exponent of U120.

It is easy to check that for any finite groups G1, . . . , Gk we have

exp(G1 × . . .×Gk) = LCM(exp(G1), . . . , exp(Gk)).

By Corollary 8.3 from class, U120
∼= U3 × U5 × U8, so

m = LCM(exp(U3), exp(U5), exp(U8)).
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We know that the groups U3 and U5 are cyclic of orders 2 and 4, respectively,

so exp(U3) = 2 and exp(U5) = 4. The group U8 has 3 non-identity elements

[3]8, [5]8 and [7]8, all of which have order 2, so exp(U8) = 2. Therefore,

m = LCM(2, 4, 2) = 4.

4. Let f(x) = x3 − a2x2 + p2. We start by solving the congruence f(x) ≡ 0

mod p. We get p | (x3−a2x2) = x2(x−a2), so p | x or p | (x−a2); equivalently,

x ≡ 0 or a2 mod p. To determine possible lifts of these solutions, we evaluate

f ′(0) and f ′(a2).

We have f ′(x) = 3x2 − 2a2x, so f ′(a2) = 3a4 − 2a4 = a4 6≡ 0 mod p since

p - a. Thus, x = a2 lifts to a unique reduced solution to f(x) ≡ 0 mod pk

for any k; in particular, this is true for k = 3.

On the other hand, f ′(0) = 0, so we cannot determine the number of lifts

of x = 0 right away. Potential lifts of 0 have the form x = pk. Rather than

starting with solving f(x) ≡ 0 mod p2, we plug in x = pk directly into the

congruence f(x) ≡ 0 mod p3.

We get (pk)3 − a2(pk)2 + p2 ≡ 0 mod p3. This simplifies to (ak)2 ≡ 1

mod p, which is equivalent to ak ≡ ±1 mod p. Since gcd(a, p) = 1, each of

the congruences ak ≡ 1 mod p and ak ≡ −1 mod p has unique solution in

the interval [0, p − 1], call them k0 and k1; hence an arbitrary solution has

the form k = k1 + pn or k = k2 + pn with n ∈ Z. Moreover, k1 6≡ k2 mod p

since a(k1 − k2) = ak1 − ak2 ≡ 1 − (−1) = 2 mod p and p is odd, so these

two families are distinct.

The corresponding solutions to f(x) ≡ 0 mod p3 are x = pk1 + p2n and

x = pk2+p2n. We may be tempted to say that there are two reduced solutions

(namely pk1 and pk2), but remember that we are solving f(x) ≡ 0 mod p3

(not mod p2), so reduced solutions are the ones in the interval [0, p3 − 1].

Since 0 ≤ k1, k2 ≤ p− 1 by construction, the number pki + p2n (for i = 1, 2)

lies in the interval [0, p3 − 1] if and only if 0 ≤ n ≤ p− 1.

Thus, the number of reduced solutions to f(x) ≡ 0 mod p3 satisfying

x ≡ 0 mod p is equal to 2p. Therefore, the total number of reduced solutions

to f(x) ≡ 0 mod p3 is equal to 2p + 1.

5. Let pa11 . . . pakk be a prime factorization of n. We will show that if all ai
are even, then

√
n is an integer, and if at least one ai is odd, then

√
n is

irrational.

The first statement is clear: if ai = 2bi for some bi ∈ N for each i, then√
n = pb11 . . . pbkk ∈ Z.

Now suppose that ai is odd for some i. Assume that
√
n is rational, so
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√
n = e

f
for some e, f ∈ N. Multiplying both sides by f and squaring, we get

e2 = f 2n. Applying the function ordpi to both sides and using the equality

ordpi(xy) = ordpi(x) + ordpi(y), we get 2ordpi(e) = ordpi(n) + 2ordpi(f) =

ai + 2ordpi(f). Therefore, ai = 2ordpi(e)− 2ordpi(f) is even, contrary to our

assumption. Hence,
√
n is irrational.
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