
Homework #9. Solutions to selected problems.

1. Let p be a prime of the form 4k + 3.

(a) Prove that if p - a or p - b, then p - (a2 + b2).

(b) Use (a) to prove that ordp(a
2 + b2) is even for any a, b ∈ Z with a 6= 0

or b 6= 0.

Solution: (a) If p divides one of the numbers a and b (but not the other),

then clearly p does not divide a2 + b2. So, we can assume that p - a and p - b.
Suppose that p | (a2 + b2), so a2 + b2 = pm for some m ∈ Z. Hence b2 =

pm− a2. Take Legendre symbols over p of both sides. Since
(
−1
p

)
= −1 (as

p ≡ 3 mod 4) and
(

x
p

)
=

(
x+pm

p

)
for any x, we get(

b2

p

)
=

(
pm− a2

p

)
=

(
−a2

p

)
=

(
−1

p

)(
a2

p

)
= −

(
a2

p

)
. (∗ ∗ ∗)

Since p - a and p - b, both Legendre symbols
(

a
p

)
and

(
b
p

)
are equal to ±1,

so
(

a2

p

)
=

(
a
p

)2

= 1 and similarly
(

b2

p

)
= 1. This contradicts (***).

(b) Let pk be the highest power of p which divides both a and b. Thus a = pkc

and b = pkd for some c, d ∈ Z, and at least one of the numbers c and d is not

divisible by p, so by part (a), p - (c2 + d2). Since a2 + b2 = p2k(c2 + d2), we

conclude that ordp(a
2 + b2) = 2k.

2. Let ω be a complex number such that ω 6∈ Z and ω2 = n1ω + n2 for

some n1, n2 ∈ Z. For instance, if d is a positive integer which is not a perfect

square, we can take ω =
√
d or ω = i

√
d. Define

Z[ω] = {a+ bω : a, b ∈ Z} and Q[ω] = {a+ bω : a, b ∈ Q}.

(a) Prove that Z[ω] is a commutative ring with 1 and that Q[ω] is a field.

For the remaining parts of this problem assume that ω =
√
d or ω = i

√
d for

some d as above.

(b) Define the conjugation map ι : Q[ω] → Q[ω] by ι(a + bω) = a − bω

Prove that ι is a ring isomorphism.
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(c) Prove that u · ι(u) ∈ R for any u ∈ Q[ω].

(d) Define the norm map N : Q[ω]→ R≥0 by N(u) = |u · ι(u)|. Prove that

N(uv) = N(u)N(v).

(e) Prove that N(u) ∈ Z for any u ∈ Z[ω] and N(u) = 0 ⇐⇒ u = 0.

(f) Let u ∈ Z[ω]. Prove that N(u) = 1 ⇐⇒ u is a unit of Z[ω].

Solution: (d) By part (b) we have ι(uv) = ι(u)ι(v) for all u, v ∈ Q[ω], so

N(uv) = |uv · ι(uv)| = |uv · ι(u)ι(v)| = |uι(u)| · |vι(v)| = N(u)N(v).

Note that the explicit formula for the norm function N is

N(a+bω) = a2+db2 if ω = i
√
d and N(a+bω) = |a2−db2| if ω =

√
d. (!!!)

(f) “⇒” Suppose thatN(u) = 1. SinceN(u) = |ι(u)·u|, we have ι(u)·u = ±1,

so (±ι(u)) · u = 1. Hence u−1 = ±ι(u) ∈ Z[ω], so u is a unit of Z[ω].

Conversely, suppose that u is a unit of Z[ω], so uv = 1 for some v ∈ Z[ω].

Taking norms of both sides, we get N(uv) = N(1) = 1, so N(u)N(v) = 1.

Since both N(u) and N(v) are non-negative integers (which is clear from

formula (!!!) above), we have N(u) = N(v) = 1.

Remark: If ω = i
√
d, the ring Z[ω] has very few units. Indeed, the only

pair of integers (a, b) satisfying a2 + db2 = 1 are (±1, 0) and (0,±1) if d = 1

and (±1, 0) if d > 1.

On the other hand, if ω =
√
d, there are infinitely many units in Z[ω], as we

saw when describing solutions to Pell’s equation.

3. Prove that Z[i
√

2] is a Euclidean domain.

Solution: Let R = Z[i
√

2] and F = Q[i
√

2]. Define the norm function

N : F → Q by N(a + bi
√

2) = a2 + 2b2. By the same argument as in

Problem 2, N(fg) = N(f)N(g) for all f, g ∈ F . Also note that N(f) ∈ Z
for f ∈ R.

To prove that R is a Euclidean domain, it suffices to check that

(i) N(x) = 0 ⇐⇒ x = 0

(ii) For any a, b ∈ R with b 6= 0 there exist q, r ∈ R such that a = bq + r

and N(r) < N(b).
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Property (i) is obvious. To prove (ii), take any a, b ∈ R with b 6= 0. Since F

is a field, a
b

= x+ yi
√

2 for some x, y ∈ Q.

We can find INTEGERS m and n such |x−m| ≤ 1
2

and |y − n| ≤ 1
2
. We

set q = m + ni
√

2 and r = a − bq. Then automatically a = bq + r, and it

remains to check that N(r) < N(b). We have r = a − bq = b(a
b
− q) =

b((x+ yi
√

2)− (m+ ni
√

2)) = b((x−m) + (y − n)i
√

2). Note that

N((x−m) + (y − n)i
√

2) = (x−m)2 + 2(y − n)2 ≤ 1

4
+ 2 · 1

4
=

3

4
.

Therefore,

N(r) = N(b((x−m)+(y−n)i
√

2)) = N(b)N((x−m)+(y−n)i
√

2) ≤ 3

4
N(b) < N(b).

4.

(a) Determine which primes are representable in the form a2 + 2b2 with

a, b ∈ Z.

(b) (bonus) Describe all integers representable as a2 + 2b2 with a, b ∈ Z.

Solution: We claim that a prime p is representable as p = a2 + 2b2 if and

only if p = 2 or p ≡ 1 or 3 mod 8.

First suppose that p ≡ 5 or 7 mod 8. From the equality
(
−2
p

)
=

(
−1
p

)
·
(

2
p

)
and the formulas for

(
−1
p

)
and

(
2
p

)
we proved earlier, we get

(
−2
p

)
= −1.

Arguing as in Problem 1, we conclude that ordp(a
2 +2b2) is even for any pair

(a, b) 6= (0, 0). In particular, a2 + 2b2 cannot equal p.

One can also give a more elementary argument: by direct computation for

any x ∈ Z we have x2 ≡ 0, 1 or 4 mod 8, so a2 + 2b2 can only be congruent

to 0, 1, 4, 2, 3 or 6 mod 8.

Note that 2 = 02 +2 ·12 is representable in the desired form. Now suppose

that p ≡ 1 or 3 mod 8. We will first show that p is NOT prime as an element

of the ring Z[i
√

2].

Again by direct computation
(
−2
p

)
= 1, so there exists x ∈ Z such that

x2 ≡ −2 mod p and thus p | (x2+2). Note that (x2+2) = (x+i
√

2)(x−i
√

2).

Since x+i
√
2

p
= x

p
+ 1

p
i
√

2 6∈ Z[i
√

2] and similarly x−i
√
2

p
6∈ Z[i

√
2], we conclude

that p does not divide x± i
√

2 in Z[i
√

2], so p is not prime in Z[i
√

2].

Since Z[i
√

2] is a Euclidean domain by Problem 3, irreducible elements of

Z[i
√

2] are prime, so p is not irreducible in Z[i
√

2]. Since p 6= 0 and p is not

a unit by Problem 2(f), p = fg for some non-units f, g ∈ Z[i
√

2].
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Taking norms of both sides, we get N(f)N(g) = p2. Since f and g are

non-units, N(f) and N(g) are both larger than 1, so we must have N(f) =

N(g) = p. Thus if f = a+ bi
√

2, then p = N(f) = a2 + 2b2, as desired.

(b) Answer: an integer n > 1 is representable in the form a2 + 2b2 with

a, b ∈ Z ⇐⇒ all primes congruent to 5 or 7 mod 8 appear in the prime

factorization of n with even exponent. The proof is completely analogous to

that of the corresponding result about representations of integers as sums of

squares.

5. Let R = Z[
√

5]. Find an element of R which is irreducible but not prime

and prove your assertion.

Solution: We start with equality 2 · 2 = (
√

5 + 1)(
√

5 − 1) = 4. Since√
5±1
2
6∈ R while 2 | 4, we conclude that 2 is not prime in R.

Now we will show that 2 is irreducible. We shall use the norm function from

Problem 2, which in this case is given by N(a+ b
√

5) = |a2 − 5b2|.
Suppose that 2 is not irreducible. Clearly, 2 6= 0 and 2 is not a unit since

N(2) = 4 6= 1; hence the only possibility is that 2 = fg for some non-units

f and g. Then, as in the solution to Problem 4(a) we have N(f)N(g) = 4,

so N(f) = N(g) = 2.

If f = a+ b
√

5, we have |a2− 5b2| = 2, so a2− 5b2 = ±2, whence a2 ≡ 2 or 3

mod 5. On the other hand, by direct computation x2 ≡ 0, 1 or 4 mod 5 for

any x ∈ Z, so we reached a contradiction.
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