
Homework #7. Solutions to selected problems.

1. Let p be an odd prime. Prove that
∑p−1

a=1

(
a
p

)
= 0.

Solution: By Lemma 7.3 from the book, precisely half of the integers in

the interval [1, p − 1] are quadratic residues (while the other half are non-

residues). Therefore in the sum
∑p−1

a=1

(
a
p

)
half of the terms are equal to 1

and half are equal to −1, so the sum is equal to 0.

Here is a slightly different solution. Let s =
∑p−1

a=1(
a
p
). Since (0

p
) = 0, we

have s =
∑p−1

a=0(
a
p
). Note that s + p =

∑p−1
a=0((

a
p
) + 1). Denote by N(a) the

number of reduced solutions to the congruence x2 ≡ a mod p. As shown in

class, N(a) = (a
p
) + 1, so s + p =

∑p−1
a=0N(a).

On the other hand, each integer x0 ∈ [0, p−1] arises as a reduced solution

to x2 ≡ a mod p for unique a ∈ [0, p−1] (namely a = x2
0 mod p). Therefore,∑p−1

a=0N(a) is equal to the number of integers in [0, p − 1], that is, equal to

p. So, s + p = p, whence s = 0.

4. Let a, b, c ∈ Z. Prove that for any prime p, the congruence (x2− ab)(x2−
ac)(x2 − bc) ≡ 0 mod p has a solution.

Solution: Suppose that (x2 − ab)(x2 − ac)(x2 − bc) ≡ 0 mod p has no

solutions. Then each of the congruences (x2− ab) ≡ 0 mod p, (x2− ac) ≡ 0

mod p and (x2 − bc) ≡ 0 mod p has no solutions, which means that(
ab

p

)
=

(
ac

p

)
=

(
bc

p

)
= −1.

Multiplying these equalities together and using multiplicativity of the Leg-

endre symbol in the numerator, we get
(

a2b2c2

p

)
= −1. On the other hand,

(a
2b2c2

p
) = (abc

p
)2 ≥ 0, which is a contradiction.

5. The goal of this problem is to use Legendre symbols to prove that there

are infinitely many primes of the form 8n + 3, 8n + 5 and 8n + 7.

(a) Prove that there are infinitely many primes of the form 8n + 5.

(b) Now prove that there are infinitely many primes of the form 8n + 7.

(c) Finally prove that there are infinitely many primes of the form 8n+ 3.
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Solution: (a) Assume that there are only finitely many primes p1, . . . , pk of

the form 8n + 5, and let m = 4(p1 . . . pk)2 + 1. First note that since z2 ≡ 1

mod 8 for any odd z, we have m ≡ 4 · 1 + 1 = 5 mod 8.

Now let p be any prime divisor of m. Then p is odd (since m is odd) and

p 6= pi for any i. Since m has the form x2 + 1, the congruence x2 + 1 ≡ 0

mod p has a solution, so (−1
p

) = 1, and therefore (since p is odd), p ≡ 1

mod 4.

Thus, all primes divisors of p are congruent to 1 mod 4, so congruent to

1 or 5 mod 8. If all prime divisors were congruent to 1 mod 8, then m itself

would be congruent to 1 mod 8, which is not the case. Therefore, m has at

least prime divisor of the form 8n + 5 (different from p1, . . . , pk), which is a

contradiction.

(b) Again assume that there are only finitely many primes p1, . . . , pk of the

form 8n + 7, and let m = (p1 . . . pk)2 − 2. Then m ≡ 1− 2 ≡ 7 mod 8.

By the same argument as in (a), for each prime p dividing m we have

(2
p
) = 1, so p ≡ 1 or 7 mod 8.

As in (a), since m is congruent to 7 mod 8, it cannot be a product of

primes of the form 8n + 1, so m has a divisor of the form 8n + 7 (different

from p1, . . . , pk), again a contradiction.

(c) We know that(
2

p

)
=

{
1 if p ≡ 1, 7 mod 8
−1 if p ≡ 3, 5 mod 8

;

(
−1

p

)
=

{
1 if p ≡ 1, 5 mod 8
−1 if p ≡ 3, 7 mod 8

Multiplying these equalities, we get that(
−2

p

)
=

{
1 if p ≡ 1, 3 mod 8
−1 if p ≡ 5, 7 mod 8

(∗ ∗ ∗)

Now suppose that there are only finitely many primes p1, . . . , pk of the form

8n + 3, and let m = (p1 . . . pk)2 + 2. Then m ≡ 1 + 2 = 3 mod 8. As in

(a) and (b), we first use (***) to prove that all prime divisors of m have the

form 8n+1 or 8n+3 and then argue that at least one of those prime divisors

has the form 8n + 3.

6. Let p be an odd prime.

(a) Prove that
(
p−1
2

)
!
2 ≡ (−1)

p−1
2 (p − 1)! mod p (this congruence will be

used in the proof of quadratic reciprocity in class). Hint: write each

expression as a product of p− 1 elements and show that after suitable

reordering of factors, the ith factor on the left is congruent mod p to

the ith factor on the right, for each i.
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(b) Use (a) and Wilson’s theorem to prove that if p ≡ 3 mod 4, then(
p−1
2

)
! ≡ ±1 mod p.

Solution: Let N =
(
p−1
2

)
!
2

=

p−1
2∏

i=1

i ·
p−1
2∏

j=1

j. Let us subtract p from each factor

in the second product

p−1
2∏

j=1

j. Then the resulting number N ′ will be congruent

to N mod p. On the other hand,

N ′ =

p−1
2∏

i=1

i ·

−(p+1)
2∏

j=−(p−1)

j =

p−1
2∏

i=1

i · (−1)
p−1
2 ·

p−1∏
(p+1)

2

j = (−1)
p−1
2 (p− 1)!.

Thus,
(
p−1
2

)
!
2 ≡ (−1)

p−1
2 (p− 1)! mod p, as desired.

(b) By Wilson’s theorem, (p− 1)! ≡ −1 mod p, so by (a)
(
p−1
2

)
!
2 ≡ (−1)

p+1
2

mod p. If p ≡ 3 mod 4, the right-hand side of this congruence is equal to 1.

Since x2 ≡ 1 mod p implies x ≡ ±1 mod p, we conclude that
(
p−1
2

)
! ≡ ±1

mod p.
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