
Homework #5. Solutions to selected problems

1. Let n ≥ 2 be an even integer. Prove that for any a ∈ Z the congruence

x2 + 3x + a ≡ 0 mod n always has an even number of reduced solutions

(possibly zero solutions).

Solution: Let f(x) = x2 + 3x + a. Below we denote by sn the number of

reduced solutions to f(x) ≡ 0 mod n.

First consider the case n = 2. The number x2 + 3x = x(x + 3) is always

even (since x is even or x + 3 is even). So, if a is even, the congruence

f(x) ≡ 0 mod 2 always holds (hence s2 = 2), and if a is odd, f(x) ≡ 0

mod 2 never holds (hence s2 = 0). In either case, s2 is even.

Now suppose that n = 2e for some e ∈ N. Since f ′(x) = 2x + 3 is never

divisible by 2, by Lifting Theorem we know that s2e = s2 (and thus s2e is

always even).

Finally, consider the general case. As proved in class, if k, l ∈ N are

coprime, then skl = sksl. Given any even n, we can write n = 2em where

e > 0 and m is odd. Then sn = s2esm is even since we just proved that s2e

is even.

2. Let n,m be positive integers and d = gcd(m,n). Prove that

φ(mn)φ(d) = φ(m)φ(n)d

(where φ is the Euler function).

Solution: Given a positive integer k, denote by P (k) the set of primes

dividing k, and let

C(k) =
∏

p∈P (k)

(1− 1

p
).

One of the formulas for the Euler function can be written as

φ(k) = kC(k).

Therefore, φ(mn)φ(d) = mndC(mn)C(d) and φ(m)φ(n)d = mndC(m)C(n),

and to prove the desired formula we just need to show that

C(mn)C(d) = C(m)C(n) (∗ ∗ ∗)
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To prove (***) we will argue that for each prime p, the expression 1 − 1
p

appears on both sides of (***) with the same multiplicity. We consider three

cases.

Case 1: p - m and p - n. In this case, p - d and p - nm either, so 1 − 1
p

does not appear on either side of (***).

Case 2: p divides n or m, but not both. In this case, p - d, but p | nm.

Hence the factor 1− 1
p

appears with multiplicity 1 in both sides of (***) (it

comes from C(mn) on the left and either C(m) or C(n), but not both, on

the right).

Case 3: p divides n and m. Then p also divides nm and d. Hence 1 − 1
p

appears in each of the four products C(mn), C(d), C(m), C(n) and hence

appears in both sides of (***) with multiplicity two.

3. In this question we investigate the following question: given n ∈ N, how

many solutions can the equation φ(x) = n have?

(a) Read about Fermat primes in Chapter 2. Let Fn = 22n + 1 be the

nth Fermat number. It is easy to verify directly that Fn is prime for

0 ≤ n ≤ 4, and it is known that Fn is composite for 5 ≤ n ≤ 32.

Use these facts to compute the number of solutions to the equation

φ(x) = 22013.

(b) Let n = 2pq where p and q are distinct odd primes. Prove that the

equation φ(x) = n has a solution if and only if at the least one of the

following holds: q = 2p+ 1, p = 2q + 1 or 2pq + 1 is prime. Also prove

that the number of solutions is equal to 0, 2 or 4.

Solution to (b): First of all, recall that φ(m) is even for any m > 2. This

fact will play a key role in the argument below.

Let x be such that φ(x) = 2pq, and let x = pa11 . . . pakk be a prime factor-

ization of x. We first claim that there exists at most one i such that paii > 2.

Indeed, if there exist i 6= j such that paii > 2 and p
aj
j > 2, then φ(paii ) and

φ(p
aj
j ) are both even, whence φ(x) is divisible by 4, a contradiction since

φ(x) = 2pq and p and q are odd.

Thus, the only possibilities for x are x = pa11 or x = 2pa11 (and in the latter

case p1 is odd).

Case 1: x = pa11 . If a1 ≥ 3, then φ(x) is divisible by p21, a contradiction, so

x = p1 or p21. If x = p1, φ(x) = p1− 1, so x = 2pq+ 1. Moreover, x = 2pq+ 1

is a solution if and only if 2pq+1 is prime (since we assume that p1 is prime).
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If x = p21, φ(x) = p1(p1 − 1). Since p1 is prime, the equality p1(p1 − 1) = 2pq

holds if and only if one of the following holds:

(i) p1 = 2 and p1 − 1 = pq

(ii) p1 = p and p1 − 1 = 2q

(iii) p1 = q and p1 − 1 = 2p

Clearly, case (i) is impossible, case (ii) occurs if and only if p = 2q + 1 and

(iii) occurs if and only if q = 2p+ 1. It is also clear that (ii) and (iii) cannot

hold simultaneously.

Overall, we get that the number of solutions of the form x = pa11 is equal to

0, 1 or 2, and for any such solution p1 is odd (as p1 = p, q or 2pq + 1)

Case 2: x = 2pa11 with p1 odd. Then φ(x) = φ(2)φ(pa11 ) = φ(pa11 ), so

φ(2pa11 ) = n if and only if φ(pa11 ) = n. Hence every solution found in case

1 yields the corresponding solution in case 2 (obtained by multiplication by

2), and there are no other solutions in case 2.

Thus, the total number of solutions is twice the number of solutions found in

case 1, hence is equal to 0, 2 or 4, and by the argument in case 1, solutions

exist if and only if p = 2q + 1, q = 2p+ 1 or 2pq + 1 is prime.
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