Homework #5. Due Wednesday, February 19th, in class Reading:

1. For this homework assignment: Chapter 5.

2. For the next two classes: Chapter 6.

Problems:

1. Let $n \geq 2$ be an even integer. Prove that for any $a \in \mathbb{Z}$ the congruence $x^2 + 3x + a \equiv 0 \mod n$ always has an even number of reduced solutions (possibly zero solutions).

2. Let *n*, *m* be positive integers and $d = gcd(m, n)$. Prove that

$$
\phi(mn)\phi(d) = \phi(m)\phi(n)d
$$

(where ϕ is the Euler function).

3. In this question we investigate the following question: given $n \in \mathbb{N}$, how many solutions can the equation $\phi(x) = n$ have?

- (a) Read about Fermat primes in Chapter 2. Let $F_n = 2^{2^n} + 1$ be the nth Fermat number. It is easy to verify directly that F_n is prime for $0 \leq n \leq 4$, and it is known that F_n is composite for $5 \leq n \leq 32$. Use these facts to compute the number of solutions to the equation $\phi(x) = 2^{2013}.$
- (b) Let $n = 2pq$ where p and q are distinct odd primes. Prove that the equation $\phi(x) = n$ has a solution if and only if at the least one of the following holds: $q = 2p + 1$, $p = 2q + 1$ or $2pq + 1$ is prime. Also prove that the number of solutions is equal to 0, 2 or 4.

4. Let R and S be commutative rings with 1, and let $\phi: R \to S$ be a surjective ring homomorphism satisfying $\phi(1_R) = 1_S$.

- (a) Prove that $\phi(R^{\times}) \subseteq S^{\times}$ and the restricted map $\phi: R^{\times} \to S^{\times}$ is a group homomorphism.
- (b) Give an example showing that $\phi(R^{\times})$ may be strictly smaller than S^{\times} .

(c) Assume now that ϕ is a ring isomorphism. Prove that $\phi(R^{\times}) = S^{\times}$ and the restricted map $\phi: R^{\times} \to S^{\times}$ is a group isomorphism. (This result was stated as Lemma 8.1 in class)

5. For a natural number k let $U_k = \mathbb{Z}_k^{\times}$ χ_k^{\times} , the group of units of \mathbb{Z}_k (this notation is standard; we will start using it in class next week). Now fix $m, n \in \mathbb{N}$ where $m \mid n$, and define $f: U_n \to U_m$ by $f([x]_n) = [x]_m$ (we verified in class that such f is well defined). Prove that f is surjective, that is,

$$
f(U_n)=U_m.
$$

Hint: First consider the case when n is a prime power, in which case the result can be proved using an explicit description of U_n and U_m as subsets of \mathbb{Z}_n and \mathbb{Z}_m , respectively (similar to what we used in the proof of Theorem 8.5(1) in class). In the general case write $n = p_1^{a_1} \dots p_k^{a_k}$ (where p_1, \dots, p_k are distinct primes and each $a_i \geq 1$) and $m = p_1^{b_1} \dots p_k^{b_k}$ and consider the diagram

$$
U_n \longrightarrow U_{p_1^{a_1}} \times \dots \times U_{p_k^{a_k}}
$$

\n
$$
U_n \longrightarrow U_{p_1^{b_1}} \times \dots \times U_{p_k^{b_k}}
$$

\n
$$
U_m \longrightarrow U_{p_1^{b_1}} \times \dots \times U_{p_k^{b_k}}
$$

\n
$$
(1)
$$

where the maps f_1, f_2 and g are defined by

$$
f_1([x]_n) = ([x]_{p_1^{a_1}}, \dots, [x]_{p_k^{a_k}})
$$

\n
$$
f_2([x]_m) = ([x]_{p_1^{b_1}}, \dots, [x]_{p_k^{b_k}})
$$

\n
$$
g([x_1]_{p_1^{a_1}}, \dots, [x_k]_{p_k^{a_k}}) = ([x_1]_{p_1^{b_1}}, \dots, [x_k]_{p_k^{b_k}})
$$

Note that this diagram is commutative, that is, $gf_1 = f_2f$ as maps. Use what you already know about f_1, f_2 (from class) and g to prove that f is surjective.

Hint for Problem 1. Start with the case $n = 2$, then consider the case when *n* is a power of 2 and finally prove the result for an arbitrary even *n*.

Hint for Problem 2. Use an explicit formula for the Euler function. The solution will be considerably simpler if you pick the right version of the formula.