Homework #4. Solutions to selected problems

3. Let G be a finite group. The exponent of G, denoted by exp(G), is
the smallest positive integer m such that ¢™ = e for all ¢ € G. Note that
gl¢l = ¢ for all ¢ € G by (a corollary of) Lagrange theorem, so we always
have exp(G) < |G].

(a) Prove that exp(G) is equal to the least common multiple of orders of
elements of G. Hint: Use Problem 5 from HW#1.

(b) Let S be the set of possible orders of elements of G. Prove that if
n € S, then every positive divisor of n also lies in S.

In the remaining parts of this problem we assume that the group G is abelian.

(c) Let g,h € G, let k = o(g), | = o(h) (where o(z) is the order of ).
Let m = lem(k,l). Prove that (gh)™ = e. If in addition ged(k,l) = 1,
prove that o(gh) = m = kl.

(d) Prove that for any g, h € G there exists an element f € G with o(f) =
lem(o(g), o(h)).

(e) Let g € G be an element of maximal order (among all elements of G).
Prove that o(h) | o(g) for all h € G and deduce that o(g) = exp(G).
Hint: use (d).

Solutions to (c)-(e):

(c) Since G is abelian, (gh)™ = g™h™. Since o(g) and o(h) both divide m,
we have g"h™ =e-e =e.

Assume now that ged(k, 1) = 1. We already know that o(gh) < lem(k,l) =
kl = m. To prove the equality we need to argue that if (gh)™ = e for
some M € N, then M > m. Again since G is abelian, (gh)™ = e implies
g"hM = ¢, so g™ = h™™. Hence the element g lies in (g) N (h), the
intersection of cyclic subgroups generated by g and h.

Note that (g) N (h) is a subgroup of both (g) and (h), so by Lagrange
theorem [(g) N (h)| divides both |(g)] = o(g9) = k and |[(h)| = o(h) = .
Since ged(k,l) = 1, we conclude that |(g) N (h)| = 1. Thus, the intersection
{(g) N (h) is trivial, so we must have ¢ = h™ = ¢ (hence hM = ¢). By
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HW 1.5, this implies that M is a multiple of both o(g) = k and o(h) = [, so
M > lem(k,l) = ki, as desired.

(d) Let py, ..., px be the set of primes which divide o(g) or o(h), so we can
write o(g) = pi*...pi* and o(g) = pi*...pt¥. By (b), there exist elements
91y Gk P,y - oo e with o(g;) = p® and o(h;) = p¥ for 1 <4 < k. For each
iput f; = g; if a; > b; and f; = h; otherwise. In either case o(f;) = p;.“a"{““bi}.

Let f = f1... fr. We claim that this element has the desired property.
By construction, the orders of elements fi,..., fx are pairwise coprime, so
repeated applications of part (c)(combined with HW 2.1) show that o(f) =
o(f1) . ..o(fx). Hence the formula for LCM of several integers from HW 3.2(ii)
implies that o(f) = lem(o(g),o(h)).

(e) This is a simple proof by contradiction. Suppose that there exists
h € G such that o(h) does not divide o(g). Then lem(o(h),o0(g)) is strictly
larger than o(g). On the other hand, by (d) there exists f € G with o(f) =
lem(o(h),0(g)), which contradicts the assumption that g is an element of
maximal order.

4. Let p be a prime. Prove that the group Z; is cyclic.
Solution: Let G = Z; and m = exp(G). By definition of exponent, g™ = e
for all g € G, that is, [z]' = [1], for all € Z with p { . Equivalently,

P
whenever p  x we have 2™ = 1 mod p, whence 2™ = z mod p. Note

that the congruence ™1

=2 mod p is also valid if p | z, so it holds for all
x € Z and thus has p reduced solutions. On the other hand, since p is prime,
by Corollary 7.5 from class, the number of reduced solutions cannot exceed
deg(z™*! — x) = ™. Hence m + 1 > p and thus m > p — 1 = |G/. Since
we always have exp(G) < |G|, we conclude that m = |G].

By Problem 3(e), there exists g € G with o(g) = m, so G has an element

g with o(g) = |G| = p — 1, and therefore G is cyclic.

Before discussing problems 5 and 6 we introduce some convenient terminol-
ogy and recall basic results about lifts of solutions to polynomial congruences
modulo a prime power. So, let f(z) € Z[z] and let p be a prime.
Definition. Let zg be a reduced solution to f(z) = 0 mod p°¢ for some
e € N. A lift of z( is a reduced solution y to the congruence f(z) = 0
mod p°t! satisfying y = zo mod p°.

It is clear that any reduced solution to f(z) =0 mod p¢™! arises as a lift of

unique reduced solution to f(z) =0 mod p°.

Definition. A solution zy to f(z) =0 mod p°® will be called



regular if pt f/(x¢) and
singular if p | f'(x¢)

The following is the main result describing the possible number and type of
lifts.

Lifting Theorem: Let xq be a reduced solution to f(z) =0 mod p°
(a) If xq is a regular solution, then xy has a unique lift.
(b) If xo is a singular solution, then xq has either p lifts or no lifts.

(c¢) Lifts of regqular solutions are regular and lifts of singular solutions are
singular.

Parts (a) and (c) imply the following:

Corollary: If for some e € N the congruence f(x) = 0 mod p° has k
reduced solutions and all these solutions are reqular, then the congruence
f(x) =0 mod p/ has k reduced solutions for any f > e.

5. Let p be a prime and e > 1 an integer.

(a) Prove that the congruence
¥ —x=p mod p°
has precisely p reduced solutions.

(b) Find all solutions to the congruence in (a) for p = 3 and e = 2.

Solution: (a) Let f(z) = 2P — z. By Fermat’s little theorem the congruence
f(z) = 0 mod p holds for all z € Z (and thus has p reduced solutions,
namely 0,1,...,p —1). Since f’(z) = pxP~' — 1 is never divisible by p,
all those p solutions are regular. Hence f(x) = 0 mod p°® has p reduced
solutions for any e.

(b) Using the method discussed in class, we find that x = 5,6 and 7 are
reduced solutions to 23 — x = 3 mod 9. The general solution is given by
x =5,6 or 7 mod 9.

6. Let f(z) € Z[z] be a polynomial of degree 3. Prove that the congruence
f(x) =0 mod 25 cannot have precisely 8 reduced solutions.

Solution: We consider two cases.



Case 1: Not all coefficients of f(x) are divisible by 5. In this case, by
Corollary 7.5 from class, the congruence f(x) = 0 mod 5 has at most 3
reduced solutions. Suppose that among those three a are regular and b are
singular. Let ¢ be the number of singular solutions which have lifts. Then by
the lifting theorem the total number of lifts (which is precisely the number of
reduced solutions to f(x) =0 mod 25) is a + 5c. In order to have precisely
8 solutions we must have a+ 5c¢ = 8. Since a and ¢ are non-negative integers,
the only possibilities are a = 8, ¢ = 0 or a = 3 and ¢ = 1. Neither of these
can happen since by construction a + ¢ < 3.

Case 2: All coefficients of f(z) are divisible by 5. Then all coefficients
of f'(x) are also divisible by 5, so all the solutions to f(z) = 0 mod 5 are
singular. Then by the lifting theorem, the total number of lifts should be
divisible by 5, so again it cannot equal 8.



