
Homework #4. Solutions to selected problems

3. Let G be a finite group. The exponent of G, denoted by exp(G), is

the smallest positive integer m such that gm = e for all g ∈ G. Note that

g|G| = e for all g ∈ G by (a corollary of) Lagrange theorem, so we always

have exp(G) ≤ |G|.

(a) Prove that exp(G) is equal to the least common multiple of orders of

elements of G. Hint: Use Problem 5 from HW#1.

(b) Let S be the set of possible orders of elements of G. Prove that if

n ∈ S, then every positive divisor of n also lies in S.

In the remaining parts of this problem we assume that the group G is abelian.

(c) Let g, h ∈ G, let k = o(g), l = o(h) (where o(x) is the order of x).

Let m = lcm(k, l). Prove that (gh)m = e. If in addition gcd(k, l) = 1,

prove that o(gh) = m = kl.

(d) Prove that for any g, h ∈ G there exists an element f ∈ G with o(f) =

lcm(o(g), o(h)).

(e) Let g ∈ G be an element of maximal order (among all elements of G).

Prove that o(h) | o(g) for all h ∈ G and deduce that o(g) = exp(G).

Hint: use (d).

Solutions to (c)-(e):

(c) Since G is abelian, (gh)m = gmhm. Since o(g) and o(h) both divide m,

we have gmhm = e · e = e.

Assume now that gcd(k, l) = 1. We already know that o(gh) ≤ lcm(k, l) =

kl = m. To prove the equality we need to argue that if (gh)M = e for

some M ∈ N, then M ≥ m. Again since G is abelian, (gh)M = e implies

gMhM = e, so gM = h−M . Hence the element gM lies in 〈g〉 ∩ 〈h〉, the

intersection of cyclic subgroups generated by g and h.

Note that 〈g〉 ∩ 〈h〉 is a subgroup of both 〈g〉 and 〈h〉, so by Lagrange

theorem |〈g〉 ∩ 〈h〉| divides both |〈g〉| = o(g) = k and |〈h〉| = o(h) = l.

Since gcd(k, l) = 1, we conclude that |〈g〉 ∩ 〈h〉| = 1. Thus, the intersection

〈g〉 ∩ 〈h〉 is trivial, so we must have gM = h−M = e (hence hM = e). By
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HW 1.5, this implies that M is a multiple of both o(g) = k and o(h) = l, so

M ≥ lcm(k, l) = kl, as desired.

(d) Let p1, . . . , pk be the set of primes which divide o(g) or o(h), so we can

write o(g) = pa11 . . . pakk and o(g) = pb11 . . . pbkk . By (b), there exist elements

g1, . . . , gk, h1, . . . , hk with o(gi) = paii and o(hi) = pbii for 1 ≤ i ≤ k. For each

i put fi = gi if ai ≥ bi and fi = hi otherwise. In either case o(fi) = p
max{ai,bi}
i .

Let f = f1 . . . fk. We claim that this element has the desired property.

By construction, the orders of elements f1, . . . , fk are pairwise coprime, so

repeated applications of part (c)(combined with HW 2.1) show that o(f) =

o(f1) . . . o(fk). Hence the formula for LCM of several integers from HW 3.2(ii)

implies that o(f) = lcm(o(g), o(h)).

(e) This is a simple proof by contradiction. Suppose that there exists

h ∈ G such that o(h) does not divide o(g). Then lcm(o(h), o(g)) is strictly

larger than o(g). On the other hand, by (d) there exists f ∈ G with o(f) =

lcm(o(h), o(g)), which contradicts the assumption that g is an element of

maximal order.

4. Let p be a prime. Prove that the group Z×p is cyclic.

Solution: Let G = Z×p and m = exp(G). By definition of exponent, gm = e

for all g ∈ G, that is, [x]mp = [1]p for all x ∈ Z with p - x. Equivalently,

whenever p - x we have xm ≡ 1 mod p, whence xm+1 ≡ x mod p. Note

that the congruence xm+1 ≡ x mod p is also valid if p | x, so it holds for all

x ∈ Z and thus has p reduced solutions. On the other hand, since p is prime,

by Corollary 7.5 from class, the number of reduced solutions cannot exceed

deg(xm+1 − x) = xm+1. Hence m + 1 ≥ p and thus m ≥ p − 1 = |G|. Since

we always have exp(G) ≤ |G|, we conclude that m = |G|.
By Problem 3(e), there exists g ∈ G with o(g) = m, so G has an element

g with o(g) = |G| = p− 1, and therefore G is cyclic.

Before discussing problems 5 and 6 we introduce some convenient terminol-

ogy and recall basic results about lifts of solutions to polynomial congruences

modulo a prime power. So, let f(x) ∈ Z[x] and let p be a prime.

Definition. Let x0 be a reduced solution to f(x) ≡ 0 mod pe for some

e ∈ N. A lift of x0 is a reduced solution y to the congruence f(x) ≡ 0

mod pe+1 satisfying y ≡ x0 mod pe.

It is clear that any reduced solution to f(x) ≡ 0 mod pe+1 arises as a lift of

unique reduced solution to f(x) ≡ 0 mod pe.

Definition. A solution x0 to f(x) ≡ 0 mod pe will be called

2



regular if p - f ′(x0) and

singular if p | f ′(x0)

The following is the main result describing the possible number and type of

lifts.

Lifting Theorem: Let x0 be a reduced solution to f(x) ≡ 0 mod pe

(a) If x0 is a regular solution, then x0 has a unique lift.

(b) If x0 is a singular solution, then x0 has either p lifts or no lifts.

(c) Lifts of regular solutions are regular and lifts of singular solutions are

singular.

Parts (a) and (c) imply the following:

Corollary: If for some e ∈ N the congruence f(x) ≡ 0 mod pe has k

reduced solutions and all these solutions are regular, then the congruence

f(x) ≡ 0 mod pf has k reduced solutions for any f ≥ e.

5. Let p be a prime and e ≥ 1 an integer.

(a) Prove that the congruence

xp − x ≡ p mod pe

has precisely p reduced solutions.

(b) Find all solutions to the congruence in (a) for p = 3 and e = 2.

Solution: (a) Let f(x) = xp−x. By Fermat’s little theorem the congruence

f(x) ≡ 0 mod p holds for all x ∈ Z (and thus has p reduced solutions,

namely 0, 1, . . . , p − 1). Since f ′(x) = pxp−1 − 1 is never divisible by p,

all those p solutions are regular. Hence f(x) ≡ 0 mod pe has p reduced

solutions for any e.

(b) Using the method discussed in class, we find that x = 5, 6 and 7 are

reduced solutions to x3 − x ≡ 3 mod 9. The general solution is given by

x ≡ 5, 6 or 7 mod 9.

6. Let f(x) ∈ Z[x] be a polynomial of degree 3. Prove that the congruence

f(x) ≡ 0 mod 25 cannot have precisely 8 reduced solutions.

Solution: We consider two cases.
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Case 1: Not all coefficients of f(x) are divisible by 5. In this case, by

Corollary 7.5 from class, the congruence f(x) ≡ 0 mod 5 has at most 3

reduced solutions. Suppose that among those three a are regular and b are

singular. Let c be the number of singular solutions which have lifts. Then by

the lifting theorem the total number of lifts (which is precisely the number of

reduced solutions to f(x) ≡ 0 mod 25) is a + 5c. In order to have precisely

8 solutions we must have a+5c = 8. Since a and c are non-negative integers,

the only possibilities are a = 8, c = 0 or a = 3 and c = 1. Neither of these

can happen since by construction a + c ≤ 3.

Case 2: All coefficients of f(x) are divisible by 5. Then all coefficients

of f ′(x) are also divisible by 5, so all the solutions to f(x) ≡ 0 mod 5 are

singular. Then by the lifting theorem, the total number of lifts should be

divisible by 5, so again it cannot equal 8.
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