
Homework #3. Solutions to selected problems.

1. Let p be a prime. As in class, for a nonzero integer x, denote by ordp(x)

the largest integer e s.t. pe divides x (if p - x, we set ordp(x) = 0). We also

put ordp(0) =∞, so that we get a function ord : Z→ Z≥0 ∪ {∞} Prove the

following properties of the ord function:

(i) ordp(xy) = ordp(x) + ordp(y)

(ii) ordp(x + y) ≥ min{ordp(x), ordp(y)}

(iii) ordp(x + y) = min{ordp(x), ordp(y)} whenever ordp(x) 6= ordp(y)

Solution: All three statements are clear if x = 0 or y = 0, so for the rest

of the proof we shall assume that both x and y are nonzero. Below we shall

use a slightly different definition of ordp function (which is easily seen to be

equivalent to the original definition):

Definition: Let z be a nonzero integer. Then ordp(z) is the unique integer

k ∈ N such that z = pkw where w is an integer not divisible by p.

Let m = ordp(x) and n = ordp(y). This means that x = pmu and y = pnv

where p - u and p - v.

(i) We have xy = pn+muv. Since p - u and p - v, by (contrapositive

of) Euclid’s lemma, p - uv. Hence the equality xy = pn+muv implies that

ordp(xy) = n + m.

(ii) WOLOG (without loss of generality) we can assume that n ≥ m. We

can write x+ y = pm(x+ pn−my). Since n ≥ m, we have x+ pn−my ∈ Z, and

so ordp(x + y) ≥ m = min{ordp(x), ordp(y)}.
(iii) As in (ii), we have x + y = pm(x + pn−my). This time we know that

n > m, hence the number x + pn−my is not divisible by p (being the sum

of two integers, one of which is divisible by p and the other not divisible p).

Hence ordp(x + y) is equal to m = min{ordp(x), ordp(y)}.

2. Let m and n be positive integers.

(i) Express the condition m | n in terms of ordp function for different p.

Your statement should be of the form:

m | n ⇐⇒ some expression involving ordp(m) and ordp(n).
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(ii) Let p1, . . . , pk be the complete set of primes which divide m or n. By

the unique factorization theorem we can write m = pe11 . . . pekk and n =

pf11 . . . pfkk for unique e1, . . . , ek, f1, . . . , fk ∈ Z≥0 (some of these numbers

may be equal to 0 since some primes may divide m, but not n, or vice

versa). Give and prove formulas for gcd(m,n) and lcm(m,n) in terms

of p1, . . . , pk, e1, . . . , ek and f1, . . . , fk.

Answer: (i) m | n ⇐⇒ ordp(m) ≤ ordp(n) for every prime p.

(ii) gcd(m,n) = p
min{e1,f1}
1 . . . p

min{ek,fk}
k and LCM(m,n) = p

max{e1,f1}
1 . . . p

max{ek,fk}
k .

3. Let p, q and r be distinct primes and let a, b, c be integers. Consider the

system of congruences

x ≡ a mod p3q; x ≡ b mod p2q2r; x ≡ c mod pq3.

(a) Prove that the system has a solution if and only if a ≡ b mod p2q and

b ≡ c mod pq2.

(b) Let p = 5, q = 2, r = 3. Assuming hypotheses of (a) hold, find a

formula for the general solution to the system (in terms of a, b and c).

Solution: (a) The given system is equivalent to the following system of 7

congruences:

x ≡ a mod p3, x ≡ a mod q, (1)

x ≡ b mod p2, x ≡ b mod q2, x ≡ b mod r, (2)

x ≡ c mod p x ≡ c mod q3 (3)

As discussed in class, this system has a solution ⇐⇒ the following

compatibility conditions hold: b ≡ a mod p2, c ≡ a mod p, c ≡ b mod q2

and c ≡ a mod q.

In the presence of the condition b ≡ a mod p2, the condition c ≡ a mod p

is equivalent to c ≡ b mod p. Similarly, since c ≡ b mod q2, we can replace

c ≡ a mod q by b ≡ a mod q.

Thus, an equivalent system of conditions is b ≡ a mod p2, c ≡ b mod p,

c ≡ b mod q2 and b ≡ a mod q. Since any power of p and any power of q

are coprime, conditions 1 and 4 combined are equivalent to b ≡ a mod p2q

and conditions 2 and 3 are equivalent to c ≡ b mod pq2.

(b) If compatibility conditions hold, to find the general solution to the system,

for each prime we pick a congruence modulo the highest power of that prime

in (1)-(3) above, and solve the obtained system using an algorithm from the
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proof of CRT. In our situation we end up with the system x ≡ a mod p3,

x ≡ b mod r and x ≡ c mod q3.

When p = 5, q = 2, r = 3, the general solution is given by x = −624a +

1000b− 375c + 3000k with k ∈ Z.

4. Find all solutions mod 30 to the congruence x2 ≡ x mod 30 making

as few computations as possible. In particular, do not solve more than

three systems of linear congruences in the course of your proof.

Solution: Note that 30 = 2 · 3 · 5. As shown in class, the congruence

x2 ≡ x mod 30 holds if and only if there exist a, b, c ∈ {0, 1} such that

x ≡ a mod 2, x ≡ b mod 3 and x ≡ c mod 5. The general solution to this

system is x ≡ 15a + 10b + 6c mod 30 (note that to find this formula we use

an algorithm from the proof of CRT, and in the process we need to solve

precisely three congruences!) There are eight choices for the triple (a, b, c)

which give us eight solutions: x = 0, 15, 10, 6, 25, 21, 16, 31. The first seven on

this list are already reduced and 31 ≡ 1 mod 30. Thus the general solution

is x ≡ 0, 1, 6, 10, 15, 16, 21 or 25 mod 30.

6. Use Problem 5 to prove that x13 ≡ x mod 70 for any x ∈ Z.

Solution: Since 70 = 2 · 5 · 7 and 2, 5 and 7 are pairwise coprime, to prove

the result it suffices to show that for any x ∈ Z we have x13 ≡ x mod 2,

x13 ≡ x mod 3 and x13 ≡ x mod 5. The proofs of each of those congruences

are analogous, so we will just do the last one.

If 5 | x, then x13 ≡ x mod 5 since both sides are divisible by 5. And if 5 - x,

then by Fermat’s little theorem x4 ≡ 1 mod 5. Raising both sides to third

power, we get x12 ≡ 1 mod 5, and multiplying by x, we get x13 ≡ x mod 5.
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