
Homework #2. Solutions to selected problems.

1. Let n1, . . . , nk and m be positive integers, and let n = n1n2 . . . nk.

(a) Assume that gcd(ni,m) = 1 for each 1 ≤ i ≤ k. Prove that

gcd(n,m) = 1.

(b) Now assume that ni | m for each 1 ≤ i ≤ k and gcd(ni, nj) = 1

for i 6= j. Prove that n | m.

Note that both (a) and (b) were used in the proof of the Chinese

Remainder Theorem (CRT). Also note that part (b) in the case k = 2

is simply the assertion of Corollary 1.11(a) from the book.

Solution: (a) We will use the fact (established in Lecture 2) that a

congruence ax ≡ b mod k has a solution ⇐⇒ gcd(a, k) | b.
We are given that gcd(ni,m) = 1 for each i. Thus, by the above fact

there exist xi ∈ Z such that nixi ≡ 1 mod m. Multiplying these con-

gruences over all i, we get n(
k∏

i=1

xi) ≡ 1 mod m. Hence the congruence

nx ≡ 1 mod m has a solution, so again by the above fact gcd(n,m) | 1
which forces gcd(n,m) = 1.

(b) We argue by induction on k, with k = 2 being the base case.

Suppose that n1 | m and n2 | m with gcd(n1, n2) = 1. Then m = n1u

for some u ∈ Z and n2 | n1u. Since gcd(n1, n2) = 1, by the Coprime

Lemma we get n2 | u, so u = n2v for some v ∈ Z and hence m = n1n2v,

so n1n2 | m.

Induction step: Now fix k > 2, and assume the assertion of (b)

holds for k − 1. Consider the k − 1 integers n1n2, n3, . . . , nk. By part

(a) n1n2 is coprime to each ni for i ≥ 3, so these k − 1 integers are

pairwise coprime. Also each of them divides m (where n1n2 | m by the

base case and the rest divide m by assumption). Thus, we can apply

the induction hypothesis to conclude that the product of those k − 1

integers (which is equal to n) also divides m.

2. Find the general solution for each of the following congruences:

(a) 8x ≡ 7 mod 203

(b) 14x ≡ 7 mod 203

(c) 14x ≡ 6 mod 203

Solution: (a) Using the ad hoc method and the first cancellation law

(see Lecture 2), we get 8x ≡ 7 mod 203 ⇐⇒ 8x ≡ 210 mod 203
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⇐⇒ 4x ≡ 105 mod 203 ⇐⇒ 4x ≡ 308 mod 203 ⇐⇒ x ≡ 77

mod 203. So the general solution is x = 77 + 203k with k ∈ Z.

(b) Since 7 divides 14, 7 and 203, by the second cancellation law

14x ≡ 7 mod 203 ⇐⇒ 2x ≡ 1 mod 29. Since 2x ≡ 1 mod 29

⇐⇒ 2x ≡ 30 mod 29 ⇐⇒ x ≡ 15 mod 29, the general solution is

x = 15 + 29k with k ∈ Z.

(c) This congruence has no solutions since gcd(14, 203) = 7 does not

divide 6.

3.

(a) Use the proof of CRT given in class to find a solution to the

system of congruences

x ≡ a mod 7, x ≡ b mod 11, x ≡ c mod 13,

where a, b and c are fixed (but unspecified) integers. Recall

that first one needs to solve the system for the triples (a, b, c) =

(1, 0, 0), (0, 1, 0) and (0, 0, 1), after which one can write down a

solution in the general case.

(b) Now use your answer in (a) to find the general solution to the

system of congruences

x ≡ 3 mod 7, 2x ≡ 4 mod 11, 3x ≡ 5 mod 13.

Solution: (a) We first find solutions x1, x2, x3 corresponding to

the triples (a, b, c) = (1, 0, 0), (0, 1, 0) and (0, 0, 1), respectively. Fol-

lowing the proof of CRT from class, this reduces to solving congru-

ences 143z1 ≡ 1 mod 7, 91z2 ≡ 1 mod 11 and 77z3 ≡ 1 mod 13.

These simplify to 3z1 ≡ 1 mod 7, 3z2 ≡ 1 mod 11 and −z3 ≡ 1

mod 13. Solving these, we get that z1 = −2, z2 = 4 and z3 = −1, so

x1 = 143(−2) = −286, x2 = 91 · 4 = 364 and x3 = 77 · (−1) = −77

are the desired solutions. Hence (again by the argument from the

proof from class), given arbitrary a, b, c ∈ Z, a particular solution to

the system is x = −286a + 364b − 77c, and the general solution is

x = −286a + 364b− 77c + 1001k with k ∈ Z (since 7 · 11 · 13 = 1001).

(b) Using the ad hoc method, we see that the system in (b) is equiv-

alent to the following one:

x ≡ 3 mod 7, x ≡ 2 mod 11, x ≡ 6 mod 13.

By (a) the general solution is x = −286 · 3 + 364 · 2− 77 · 6 + 1001k =

−592 + 1001k with k ∈ Z. Replacing −592 by −592 + 1001, we can

also write the general solution as 409 + 1001k.
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4. Find a solution to the congruence 25x ≡ 31 mod 84 using the

method of Example 3.16.

Solution: Since 84 = 22 · 3 · 7, the congruence 25x ≡ 31 mod 84

is equivalent to the system 25x ≡ 31 mod 4, 25x ≡ 31 mod 3 and

25x ≡ 31 mod 7 which simplify to x ≡ 3 mod 4, x ≡ 1 mod 3 and

4x ≡ 3 mod 7. Solving the latter system as in 3(b), we deduce that

the general solution is x = 55 + 84k.

5.

(a) Let n be a positive integer. Prove that for any integer x there

exists an integer r such that x ≡ r mod n and 0 ≤ r ≤ n− 1.

(b) Prove that x4 ≡ 0 or 1 mod 5 for any integer x. Hint: using

(a) one can solve the problem by simple case exhaustion.

(c) Prove that there exist no integers a and b such that a4 + b4 =

20000000013. Hint: the number of zeroes on the right hand

side is completely irrelevant.

Solution: (a) This is clear from the division with remainder theorem

(just let r be the remainder of dividing x by n).

(b) By (a) for any x ∈ Z there exists r ∈ {0, 1, 2, 3, 4} such that x ≡ r

mod 5. Then x4 ≡ r4 mod 5. Since 04 = 0, 14 = 1, 24 = 16 ≡ 1

mod 5, 34 = 81 ≡ 1 mod 5 and 44 = 256 ≡ 1 mod 5, the result

follows.

(c) By (b) for any a, b ∈ Z the number a4+b4 is congruent to 0+0 = 0,

0 + 1 = 1 or 1 + 1 = 2 mod 5. Since 20000000013 ≡ 3 mod 5, the

equation a4 + b4 = 20000000013 has no integer solutions.

7. Let p be a prime.

(a) Let 0 < k < p be an integer. Prove that p |
(
p
k

)
. Hint: First

prove the following lemma: Suppose that n,m ∈ Z, p is prime,

m | n, p | n and p - m. Then p | n
m

.

(b) Now prove that (a+b)p ≡ ap +bp mod p for any integers a and

b.

(c) Show by example that the assertions of (a) and (b) may become

false without the assumption that p is prime.

Solution: (a) We first prove the lemma from the hint. Let q = n
m

.

Then n = mq, and by assumption q ∈ Z. We are given that p | n, so

p | mq. Since p is prime, by Euclid’s lemma p | m or p | q.

But we are given that p - m. Therefore, p | q, that is, p | n
m

. �
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Now we prove that p |
(
p
k

)
for 0 < k < p. Let n = p! and m =

k!(p − k)!, so that
(
p
k

)
= n

m
. We will show that the above lemma

applies to this triple (p, n,m).

First of all, p | n since p! = p · (p − 1)!. By generalized Euclid’s

lemma p - k!(p− k)!, since k!(p− k)! = 1 · . . . · k · 1 · . . . · (p− k), and all

factors in the last product are less than p (hence not divisible by p).

Finally, we know that n
m
∈ Z (e.g. by binomial theorem).

Thus, the lemma indeed applies, and we get p | n
m

, that is, p |
(
p
k

)
.

(b) This follows directly from (a) and the binomial theorem (by (a)

all the terms in the binomial expansion of (a+ b)p except ap and bp are

divisible by p).

(c) For instance 4 does not divide
(
4
2

)
= 6. Also (1 + 1)4 = 16 is not

congruent to 14 + 14 = 2 mod 4.


