
Homework #1. Due Wednesday, January 22nd, in class

Reading:

1. For this homework assignment: Chapter 1 and Section 2.1.

2. Before the class on Wed, Jan 22: Section 2.2-2.4.

Problems:

Problem 1: The Fibonacci numbers f1, f2, . . . are defined recursively by

f1 = f2 = 1 and fn = fn−1 + fn−2 for n ≥ 3. Prove that fn and fn+1 are

coprime for all n. (Two integers are called coprime if their greatest common

divisor is equal to 1).

Solution: We argue by induction. The base case n = 1 is clear.

Suppose now that gcd(fn, fn+1) = 1 for some n ≥ 1. Then by Lemma 1.5

from the book gcd(fn + fn+1, fn+1) = gcd(fn, fn+1) = 1. Since fn + fn+1 =

fn+2, this finishes the induction step.

Problem 2:

(a) Let d = gcd(123, 321). Find d and also find integers u and v such that

d = 123u + 321v.

(b) Now find all integer pairs (x, y) such that 123x + 321y = 12.

Solution: (a) Using the Euclidean algorithm, we find that d = 3 and 3 =

123 · 47 + 321 · (−18). If you forgot how to apply the Euclidean algorithm,

you can review it, for instance, in Lecture 4 of the Survey of Algebra notes.

(b) Multiplying both sides of 123 · 47 + 321 · (−18) = 3 by 4, we get

123 · 188 + 321 · (−72) = 12, so (x0, y0) = (188,−72) is a particular solution.

By Theorem 1.13 (from the book), the general solution is x = 188 + 321
3
k =

188 + 107k, y = −72− 123
3
k = −72− 41k with k ∈ Z.

Problem 3: Let a and b be positive integers and d = gcd(a, b).

(a) Prove that for any integer c such that c > ab − a − b and d | c there

exist nonnegative integers x and y such that c = ax + by. Hint: Let

x be the smallest nonnegative integer such that c = ax + by for some

y ∈ Z (explain why such x exists). Show that x < b and deduce that y

corresponding to this x is nonnegative.
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(b) Assume that a and b are coprime, that is, d = 1. Prove that c =

ab−a−b cannot be written as c = ax+by where x and y are nonnegative

integers.

(c) Now assume that a and b are NOT coprime. Prove that c = ab− a− b

can be written as c = ax + by for nonnegative integers x and y.

Solution: Throughout the argument by a solution to ax + by = c we will

always mean an integer solution.

(a) Since d | c, the equation does have a solution; moreover, by The-

orem 1.13 the x-components of the set of all solutions form an arithmetic

progression (infinite in both directions), so there is a solution (x, y) with

x ≥ 0. By the well-ordering principle, there is a solution (x0, y0) with x0 ≥ 0

and x0 smallest possible. Note that (x0 − b, y0 + a) is also a solution (either

by direct verification or using the formula for the general solution). Since

x0− b < x0, by the choice of x0 we must have x0− b < 0, whence x0− b ≤ −1

(since x0 − b ∈ Z) and hence x0 ≤ b− 1. Then ax0 ≤ a(b− 1) = ab− a and

ax0 + by0 ≤ ab − a + by0. But ax0 + by0 = c > ab − a − b by assumption,

so ab − a + by0 > ab − a − b and by0 > −b. Dividing both sides by b, we

get y0 > −1, and since y0 ∈ Z, we conclude that y0 ≥ 0. Thus, (x0, y0) is a

non-negative integer solution.

(b) By direct verification (x0, y0) = (−1, a− 1) is a solution. Since d = 1,

the general solution is x = −1 + bk, y = a− 1− ak. But −1 + bk ≤ 0 for all

k ≤ 0 while a − 1 − ak ≤ 0 for all k ≥ 1, so there is no integer k for which

both x = −1 + bk and y = a− 1− ak are non-negative.

(c) As in (b) (x0, y0) = (−1, a − 1) is a solution, whence (x, y) = (−1 +
b
d
, a − 1 − a

d
) is also a solution. Note that −1 + b

d
≥ 0 since b

d
is a positive

integer. Also by assumption d ≥ 2, so a − 1 − a
d
≥ a − 1 − a

2
= a

2
− 1 ≥ 0

(since a
d

is a positive integer). Thus, (x, y) is a non-negative integer solution.

Problem 4: Let n,m ∈ Z and suppose that gcd(n,m) = 1. Prove that

gcd(n − m,n + m) = 1 or 2 and show by examples that both possibilities

may occur.

Solution: We will show that gcd(n −m,n + m) divides 2 following the

hint, but the suggestion to use Corollary 1.11(b) was misleading.

Let d = gcd(n − m,n + m). Then d | (n − m) and d | (n + m), so

d | (n − m) + (n + m) = 2n and d | (n + m) − (n − m) = 2m. By the

properties of the greatest common divisor, since d | 2n and d | 2m, we must

have d | gcd(2n, 2m). But by Corollary 1.10 from the book gcd(2n, 2m) =

2gcd(n,m) = 2, so d | 2 and hence d = 1 or 2 (since by definition d > 0).
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If n = 2 and m = 1, then gcd(n,m) = 1 and gcd(n−m,n + m) = 1, and

if n = 3 and m = 1, then gcd(n,m) = 1 and gcd(n−m,n + m) = 2, so both

possibilities may occur.

Problem 5: Let G be a finite group and g ∈ G. Recall that the order of

g, denoted by o(g), is the smallest positive integer n such that gn = e. Take

any m ∈ Z. Prove that gm = e ⇐⇒ o(g) | m.

Solution: Let n = o(g), and divide m by n with remainder: m = nq + r

with 0 ≤ r < n. Then gm = (gn)q · gr = eq · gr = gr, so gm = e ⇐⇒ gr = e.

Since 0 ≤ r < n = o(g), we have gr = e ⇐⇒ r = 0. Hence gm = e ⇐⇒
r = 0 ⇐⇒ n | m.

Problem 6: The goal of this problem is to prove the ‘yes’ part of Prob-

lem 2 from Lecture 1: if p ≡ 1 mod 4, then there exists x ∈ Z such that

p | (x2 + 1). As explained in class, this is equivalent to proving that there

exists z ∈ Zp such that z2 + 1 = 0 (where equality holds in Zp). You may

use the following fact without proof:

Fact A: The group Z×
p = Zp \ {0} (with respect to multiplication) is

cyclic.

We will prove Fact A later in the course.

In all parts below, n is a positive integer, G is a cyclic group of order n

and g is a generator of G.

(a) Prove that for every d > 0 which divides n, there exists gd ∈ G such

that o(gd) = d and describe such gd explicitly in terms of g, n and d

(note that in general gd is not unique).

(b) Now assume that n is even. Prove that G contains a unique element of

order 2.

(c) Now let p be an odd prime, n = p − 1 and G = Z×
p . What is the

element of order 2 in G?

(d) Let p, n and G be as in part (c), and assume in addition that p ≡ 1

mod 4. Use (a), (b) and (c) to show that there exists z ∈ G such that

z2 = −1.

Solution: (a) Let gd = gn/d. Then gdd = gn = e. Also if 0 < k < d, then

0 < n
d
k < n, so gkd = g

n
d
k 6= e, so gdd is the smallest positive power of gd equal

to e. Hence by definition of the order o(gd) = d.

(b) By (a) the element g
n
2 has order 2. Now let h be any element of G of

order 2. Since g is a generator of G and n = |G|, we can write h = gm for
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some 0 < m < n (we cannot have m = 0 since otherwise h = e has order 1).

Then e = h2 = g2m, so by part (a) we must have n | 2m. But 0 < m < n,

so 0 < 2m < 2n, and the only multiple of n strictly between 0 and 2n is n.

Hence 2m = n, so m = n
2

and h = g
n
2 . So g

n
2 is the unique element of order

2 in G.

(c) [−1] is clearly an element of order 2 (and by part (b) it is the unique

element of order 2)

(d) Since p ≡ 1 mod 4, the order of G is divisible by 4, so by (a) there

exists z ∈ G which has order 4. Then z2 6= [1], but (z2)2 = z4 = [1], so z2 is

an element of order 2. By (c), we must have z2 = [−1].
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