
Homework #10. Solutions to selected problems.

1. Let α ∈ R, and assume that the continued fraction for α is infinite

periodic. Prove that α is a quadratic irrational, that is, α 6∈ Q, but α is a

root of a nonzero quadratic polynomial with integer coefficients. Hint: Start

with the case when the continued fraction for α is purely periodic, that is,

the periodic part starts from the very beginning (α = [a0, . . . , ak−1]). Start

by writing down some equation that α must satisfy (it will involve a finite

continued fraction) and then conclude that α satisfies a quadratic equation.

Then use the result in the purely periodic case to establish the general case.

Solution: Suppose first that the continued fraction for α is purely periodic.

This means that there exists a finite sequence of positive integers a0, . . . , ak−1

such that α = [a0; a1, . . . , ak−1, α].

Lemma: Let a0, . . . , ak−1 be a finite integer sequence, with each ai > 0.

Then there exist non-negative integers x, y, z and w, with x, z > 0, such that

for any real number α > 0 we have [a0; a1, . . . , ak−1, α] = xα+y
zα+w

.

Proof of the lemma: We use induction on k. In the base case k = 1 we have

[a0;α] = a0 + 1
α

= a0α+1
α

, so the statement holds with x = a0, y = z = 1 and

w = 0.

Now assuming that lemma is true for some k ≥ 1, we prove it for k + 1.

Let β = [a0; a1, . . . , ak, α]. Then β = [a0; γ] where γ = [a1; a2, . . . , ak, α]. By

induction hypothesis γ = xα+y
zα+w

for some non-negative integers x, y, z and w,

with x, z > 0. Then β = a0 + 1
γ

= a0 + zα+w
xα+y

= (a0x+z)α+(a0y+w)
xα+y

. Since a0 > 0

and x, z > 0, the coefficients of α in both numerator and denominator are

both positive, so β has required form. �

Going back to our problem, since α = [a0; a1, . . . , ak−1, α], by Lemma we

have α = xα+y
zα+w

for some x, y, z, w ∈ Z with x, z > 0. Multiplying both sides

by zα+w, we get zα2 + (w− x)α− y = 0. Thus, α is a root of a polynomial

of degree 2 (since z > 0). Since the continued fraction for α is infinite, α is

irrational, so by definition α is a quadratic irrational.

Now assume that the continued fraction for α is periodic, but not purely

periodic. Let l be the length of the “preperiodic” part of the continued frac-

tion for α, that is, α = [a0; a1, . . . , al; b1, . . . , bk]. Thus, α = [a0; a1, . . . , al, γ]

where γ = [b1, . . . , bk]. The continued fraction for γ is purely periodic, so as
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we just proved, γ is a quadratic irrational. We will now prove that α is a

quadratic irrational by induction on l.

In the base case l = 0 we have α = a0 + 1
γ
, so γ = 1

α−a0 . We know that

there exist integers x, y, z with z 6= 0 such that zγ2 + yγ + x = 0 (note that

x 6= 0 as well since otherwise γ ∈ Q). Hence z
(

1
α−a0

)2
+ y

(
1

α−a0

)
+ x = 0,

whence x(α−a0)2+y(α−a0)+z = 0, so as before, α is a quadratic irrational.

Finally, we do the induction step. Assume that l ≥ 1 and the assertion

is true for l − 1. Then α = [a0; β] = a0 + 1
β

where β = [a1; . . . , al, γ]. By

induction hypothesis, β is a quadratic irrational, and arguing as in the base

case, we conclude that α is a quadratic irrational as well.

3. Find a non-trivial solution to Pell’s equation x2 − dy2 = 1 in each of the

following cases:

(i) d = (a2 − 1) for some a ∈ N

(ii) d = a2 + 1 for some a ∈ N

(iii) d = a(a+ 1) for some a ∈ N

Answer: (i) (x, y) = (a, 1); (ii) (x, y) = (2a2 + 1, 2a); (iii) (x, y) =

(2a+ 1, 2).

4. Use continued fractions to find a solution to Pell’s equation x2 − dy2 = 1

for d = 19 and d = 41.

Solution: The continued fraction for
√

19 is [4; 2, 1, 3, 1, 2, 8]. It has even

period 6, so the continued fraction [4; 2, 1, 3, 1, 2] gives us a solution. We have

[4; 2, 1, 3, 1, 2] = [4; 2, 1, 3, 3/2] = [4; 2, 1, 11/3] = [4; 2, 14/11] = [4; 39/14] =

170/39, so (170, 39) is a solution.

The continued fraction for
√

41 is [6; 2, 2, 12]. It has odd period 3, so the

continued fraction [6; 2, 2] give us an element of Z[
√

41] of norm −1. We

have [6; 2, 2] = [6; 5/2] = 32/5, so N(32+5
√

41) = −1 and therefore N((32+

5
√

41)2) = 1. Since (32+5
√

41)2 = (322+25·41+320
√

41) = 2049+320
√

41,

the pair (2049, 320) is a solution.

5. Prove that for every n ∈ N there exists a solution to the equation x2 −
3y2 = 1 satisfying 10n < x < 10n+1.

Solution: Clearly, (x, y) = (2, 1) is a solution (in fact, the fundamental

solution). Let z = 2 +
√

3, and for each k ∈ N let xk and yk be unique

integers such that zk = xk + yk
√

3. We know that (xk, yk) is a solution for

each k, and we just need to show that 10n < xk < 10n+1 for some k.
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We claim that

2xk < xk+1 < 5xk for each k. (∗ ∗ ∗)

Indeed, by definition xk+1 + yk+1

√
3 = zk+1 = zk · z = (xk + yk

√
3)(2 +

√
3),

whence xk+1 = 2xk+3yk. This clearly implies that xk+1 > 2xk. On the other

hand, x2k − 3y2k = 1, so yk =
√

(x2k − 1)/3 < xk, whence 2xk + 3yk < 5xk.

Now fix n ∈ N. Since xk+1 > 2xk for each k, it is clear that xk → ∞ as

k → ∞, so the set {k ∈ N : xk ≤ 10n} is finite. Note that this set is also

non-empty since x1 = 2 < 10. Hence there exists the largest k for which

xk ≤ 10n. Since k is the largest with this property, xk+1 > 10n; on the other

hand, xk+1 < 5xk < 10n+1, so 10n < xk+1 < 10n+1, as desired.

6. Let (x, y, z) be a primitive integer solution for the equation x2 + 2y2 =

z2. Prove that there exist integers u and v such that (x, y, z) = (2u2 −
v2, 2uv, 2u2 + v2) or (u2 − 2v2, 2uv, u2 + 2v2).

Note: As in the case of Pythagorean triples, we call the solution (x, y, z)

primitive if gcd(x, y, z) = 1. Also, the problem was stated slightly incorrectly

– I forgot to require that x, y and z are positive.

Solution: We start by making a few observations about x and z. Since

z2 − x2 = 2y2, x and z must have the same parity. If x and z are both

even, then 4 | z2 and 4 | x2, so 4 | (z2 − x2) = 2y2, whence 2 | y2, and

therefore y is even. Hence, x, y, z are all even, contradicting the assumption

gcd(x, y, z) = 1. Thus, x and z are both odd.

Next we prove that x and z are coprime. If not, there exists a prime p which

divides both x and z, hence also divides 2y2. Since x is odd, p is also odd,

and therefore p | y, again contradicting gcd(x, y, z) = 1.

Since x and z are both odd, x ≡ ±z mod 4, so either z−x
4
, z+x

2
∈ Z or

z+x
4
, z−x

2
∈ Z.

In the first case, from the equation 2y2 = z2 − x2 = (z − x)(z + x), we get

8 | 2y2, so y is even. Dividing both sides by 8, we get(y
2

)2
=
z − x

4
· z + x

2
. (∗ ∗ ∗)

Since x and z are coprime, as in the proof of the classification of Pythagorean

triples, z−x
2

and z+x
2

are coprime, hence z−x
4

and z+x
2

are also coprime.

Since x, z > 0 and x2 < z2, we have z−x > 0 and z+x > 0, so by the result

of Problem 2 in Midterm#1 applied to (***), there exist u, v ∈ N such that
z−x
4

= v2 and z+x
2

= u2. Hence z = u2+2v2 and x = u2−2v2. Since (y/2)2 =
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u2v2 and y, u, v > 0, we get y = 2uv. So, (x, y, z) = (u2− 2v2, 2uv, u2 + 2v2),

as desired.

Similarly, in the second case (when z+x
4
, z−x

2
∈ Z), we get (x, y, z) =

(2u2 − v2, 2uv, 2u2 + v2) for some u, v ∈ N.
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