Homework #10. Solutions to selected problems.

1. Let o € R, and assume that the continued fraction for « is infinite
periodic. Prove that « is a quadratic irrational, that is, a € Q, but a is a
root of a nonzero quadratic polynomial with integer coefficients. Hint: Start
with the case when the continued fraction for « is purely periodic, that is,
the periodic part starts from the very beginning (o = [ag, - .-, ar_1]). Start
by writing down some equation that o must satisfy (it will involve a finite
continued fraction) and then conclude that « satisfies a quadratic equation.
Then use the result in the purely periodic case to establish the general case.

Solution: Suppose first that the continued fraction for « is purely periodic.
This means that there exists a finite sequence of positive integers ag, . .., ar_1
such that a = [ag; a1, ..., a1, al.

Lemma: Let ag,...,ar_1 be a finite integer sequence, with each a; > 0.

Then there exist non-negative integers x,vy, z and w, with x,z > 0, such that
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for any real number o > 0 we have [ag;ay, ..., ax_1,0] =
Proof of the lemma: We use induction on k. In the base case k = 1 we have
[ao; a =a0+é:
w=0.

%“, so the statement holds with x = ag, y = 2 =1 and

Now assuming that lemma is true for some k > 1, we prove it for k£ + 1.
Let 8 = [ag;aq,...,ak, . Then 5 = [ag;y] where v = [ay; aq, . .., ax, a]. By

induction hypothesis v = :3:3} for some non-negative integers x,y, z and w,

. . 1 _ zat+w _ (apz+2z)at(aoy+w) .
with z, z > 0. Thenﬁ—a0+7—ag+m+y— oty . Since ag > 0

and x,z > 0, the coefficients of o in both numerator and denominator are

both positive, so  has required form. [J

Going back to our problem, since o = [ag;aq, ..., a5 1,a], by Lemma we
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by za +w, we get za? + (w — x)a —y = 0. Thus, « is a root of a polynomial

have o = for some xz,y, z,w € Z with x,z > 0. Multiplying both sides
of degree 2 (since z > 0). Since the continued fraction for « is infinite, « is
irrational, so by definition « is a quadratic irrational.

Now assume that the continued fraction for « is periodic, but not purely
periodic. Let [ be the length of the “preperiodic” part of the continued frac-
tion for «, that is, a = [ag;ay,...,a;b1,...,bg). Thus, a = [ag; ay, ..., a;, "]
where v = [by, ..., b]. The continued fraction for v is purely periodic, so as



we just proved, v is a quadratic irrational. We will now prove that « is a

quadratic irrational by induction on .
In the base case [ = 0 we have @ = a¢ + %, SO v = a_lao. We know that

there exist integers x,y, z with 2z # 0 such that zv% + yv + 2 = 0 (note that
2
x # 0 as well since otherwise v € Q). Hence z (a_la0> +y <a_1a0> +2=0,

whence z(a—ag)*+y(a—ag)+2z = 0, so as before, « is a quadratic irrational.

Finally, we do the induction step. Assume that [ > 1 and the assertion
is true for [ — 1. Then o = [ag; 8] = ap + % where 8 = [a1;...,a;,7]. By
induction hypothesis, § is a quadratic irrational, and arguing as in the base
case, we conclude that « is a quadratic irrational as well.

3. Find a non-trivial solution to Pell’s equation 22 — dy? = 1 in each of the
following cases:

(i) d = (a* —1) for some a € N
(i) d = a* + 1 for some a € N
(iii) d =a(a+ 1) for some a € N

Answer: (i) (z,y) = (a,1); (i) (v,y) = (2a®> + 1,2a); (i) (z,y) =
(2a +1,2).

4. Use continued fractions to find a solution to Pell’s equation 2? — dy? = 1
for d =19 and d = 41.

Solution: The continued fraction for /19 is [4;2,1,3, 1, 2,8]. It has even
period 6, so the continued fraction [4;2,1, 3, 1, 2] gives us a solution. We have
[4:2,1,3,1,2] = [4;2,1,3,3/2] = [4;2,1,11/3] = [4;2,14/11] = [4;39/14] =
170/39, so (170, 39) is a solution.

The continued fraction for v/41 is [6;2,2,12]. It has odd period 3, so the
continued fraction [6;2,2] give us an element of Z[v/41] of norm —1. We
have [6;2,2] = [6;5/2] = 32/5, so N (32+5v/41) = —1 and therefore N ((32+
5v/41)%) = 1. Since (32+5v/41)% = (3224-25-41+3201/41) = 2049+320/41,
the pair (2049, 320) is a solution.

5. Prove that for every n € N there exists a solution to the equation 2% —
3y? = 1 satisfying 10" < x < 10"+,

Solution: Clearly, (z,y) = (2,1) is a solution (in fact, the fundamental
solution). Let z = 2 4 /3, and for each k € N let z;, and y; be unique
integers such that zF = x;, + yxv/3. We know that (2, yx) is a solution for
each k, and we just need to show that 10" < z;, < 10"** for some k.



We claim that
21 < Ty < dHry for each k. ( * %)

Indeed, by definition 2441 + yre1 V3 = 25t = 2F - 2 = (2 + yV/3) (2 + V3),
whence ;1 = 22+ 3y,. This clearly implies that x;; > 2x;. On the other
hand, 27 — 3y; = 1, so yr. = /(22 — 1)/3 < x1, whence 2z, + 3y;. < Hxy.

Now fix n € N. Since xp,1 > 2x; for each k, it is clear that z; — oo as
k — oo, so the set {k € N : x;, < 10"} is finite. Note that this set is also
non-empty since x; = 2 < 10. Hence there exists the largest £ for which
xr < 10™. Since k is the largest with this property, x;.1 > 10"; on the other
hand, z;11 < 5x, < 10", s0 10” < 41 < 10", as desired.
6. Let (x,y,2) be a primitive integer solution for the equation x? + 2y? =
2%, Prove that there exist integers u and v such that (z,y,2) = (2u® —
v? 2uv, 2u® + v?) or (u? — 202, 2uv, u? + 20?).
Note: As in the case of Pythagorean triples, we call the solution (z,y, 2)
primitive if ged(x,y, z) = 1. Also, the problem was stated slightly incorrectly
— I forgot to require that x,y and z are positive.

Solution: We start by making a few observations about z and 2. Since
2% — 2% = 2y%, x and z must have the same parity. If 2 and z are both
even, then 4 | 22 and 4 | 22, so 4 | (22 — 2%) = 2y?, whence 2 | 3%, and
therefore y is even. Hence, z,y, z are all even, contradicting the assumption
gcd(z,y,z) = 1. Thus, x and z are both odd.

Next we prove that x and z are coprime. If not, there exists a prime p which
divides both z and z, hence also divides 2y2. Since z is odd, p is also odd,
and therefore p | y, again contradicting gcd(z,y, z) = 1.

Since x and z are both odd, + = 4z mod 4, so either 2% % < 7 or
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In the first case, from the equation 2y*> = 22 — 22 = (2 — z)(z + z), we get
8 | 2%, so y is even. Dividing both sides by 8, we get

N2 z—x z4zx
5 - = (x22)

Since x and z are coprime, as in the proof of the classification of Pythagorean
Z—X Z—X

2 1
Since z, z > 0 and 22 < 2%, we have z—x > 0 and z+x > 0, so by the result
of Problem 2 in Midterm#1 applied to (***), there exist u,v € N such that

=2 =v? and 2 = . Hence z = u*42v? and x = u® —2v?. Since (y/2)* =

triples, and ZJ“T”“ are coprime, hence and ZJ“T“’ are also coprime.



u?v? and y,u,v > 0, we get y = 2uv. So, (z,y, 2) = (u® — 202, 2uv, u? + 20v?),
as desired.

Similarly, in the second case (when =% 22

(2u? — v%, 2uw, 2u® + v?) for some u,v € N.

€ 7), we get (1,,2) =



