
Number Theory. Final Exam from Spring 2013. Solutions

1.

(a) (5 pts) Let d be a positive integer which is not a perfect square.

Prove that Pell’s equation x2 − dy2 = 1 has a solution (x, y) with

x > 0, y > 0 and y even.

(b) (7 pts) Find a solution (x, y) to Pell’s equation x2 − 28y2 = 1 with

x > 0 and y > 0. Hint: (b) can, of course, be solved by the

standard method, but you may use the proof of (a) to solve (b) with

very few computations. Solution by guessing is allowed (although

direct guessing is not recommended).

Solution: (a) Let (x0, y0) be any solution with x0 > 0, y0 > 0. Then x0 +

y0
√
d ∈ Pell(d) and (since Pell(d) is a group with respect to multiplication)

(x0 + y0
√
d)2 ∈ Pell(d) as well. Since (x0 + y0

√
d)2 = (x20 +dy20) + 2x0y0

√
d,

the pair (x, y) = (x20 + dy20, 2x0y0) is also a solution. It is clear that x, y > 0

and y is even.

(b) By direct computation, the continued fraction of
√

28 is [5; 3, 2, 3, 10].

The length of the period is equal to 4 (even), so by the theorem stated in

class the numerator and the denominator of the finite continued fraction

[5; 3, 2, 3] form a solution to x2 − 28y2 = 1. We have [5; 3, 2, 3] = 127
24 , so

(127, 24) is a solution to x2 − 28y2 = 1.

Here is a more conceptual solution using (a). Observe that if we found

x0, y0 > 0 with y0 even such that x20 − 7y20 = 1, then x20 − 28(y0/2)2 = 1, so

(x0, y0/2) is a solution to x2 − 28y2 = 1.

One non-trivial solution to x2 − 7y2 = 1 is easy to guess: (x, y) = (8, 3). To

get a solution with y even we use the computation from (a): (8 + 3
√

7)2 =

127 + 48
√

7. Thus, the pair (x0, y0) = (127, 48) satisfies x20 − 7y20 = 1, so

again we deduce that (127, 48/2) = (127, 24) is a solution to x2 − 28y2 = 1.

2. Given a prime p and a nonzero integer m, let ordp(m) denote the largest

e such that pe | m.

(a) (3 pts) Prove that ordp(mn) = ordp(m) + ordp(n) for any nonzero

m and n

(b) (2 pts) Give a characterization of perfect squares in terms of ordp

function (for various p): a positive integer n is a perfect square if

and only if ... (complete the statement, no justification is necessary)
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(c) (7 pts) Let m,n and k be positive integers which are coprime as a

set (note that m,n and k are not required to be pairwise coprime).

Assume that each of the numbers mn,mk and nk is a perfect square.

Prove that m,n and k must all be perfect squares. Hint: use (a)

and (b).

Solution: (a) Let a = ordp(m) and b = ordp(n). Then m = pau and

n = pbv where p - u and p - v. We have mn = pa+b(uv), and p - uv since p

is prime. Therefore, ordp(mn) = a + b = ordp(m) + ordp(n).

(b) A positive integer n is a perfect square if and only if ordp(n) is even

for every prime p.

(c) We argue by contradiction. Assume that m is not a perfect square.

Then by (b), there is a prime p such that ordp(m) is odd. Since mn and

mk are perfect squares, ordp(mn) = ordp(m) + ordp(n) and ordp(mk) =

ordp(m) + ordp(k) must be even. Since ordp(m) is odd, we conclude that

ordp(n) and ordp(k) are also odd. In particular, all three numbers ordp(m),

ordp(k) and ordp(n) are nonzero, so p divides m,n and k. This contradicts

the assumption that m,n and k are coprime as set.

Thus, we proved that m is a perfect square. Analogous argument shows

that n and k must be perfect squares as well.

3. (12 pts) Let p 6= 7 be an odd prime. Compute the Legendre symbol (7p).

The final answer should be given in the form(
7

p

)
=

{
1 if p ≡ a1, a2, . . . , or ak mod N
−1 if p ≡ b1, b2, . . . , or bl mod N

(where a1, . . . , ak, b1, . . . , bl and N are specific integers that you need to

determine).

Solution: By Problem 3(b) from the second midterm,

(7p) = 1 ⇐⇒ (p ≡ 1 mod 4 and (p7) = 1) or (p ≡ 3 mod 4 and (p7) = −1).

By direct computation, (p7) = 1 if p ≡ 1, 2, 4 mod 7 and (p7) = −1 if

p ≡ 3, 5, 6 mod 7. Note that

• (p ≡ 1 mod 4 and p ≡ 1 mod 7) ⇐⇒ p ≡ 1 mod 28

• (p ≡ 1 mod 4 and p ≡ 2 mod 7) ⇐⇒ p ≡ 9 mod 28

• (p ≡ 1 mod 4 and p ≡ 4 mod 7) ⇐⇒ p ≡ 25 mod 28

• (p ≡ 3 mod 4 and p ≡ 3 mod 7) ⇐⇒ p ≡ 3 mod 28

• (p ≡ 19 mod 4 and p ≡ 5 mod 7) ⇐⇒ p ≡ 19 mod 28

• (p ≡ 3 mod 4 and p ≡ 6 mod 7) ⇐⇒ p ≡ 27 mod 28

Thus, (
7

p

)
= 1 ⇐⇒ p ≡ 1, 3, 9, 19, 25, 27 mod 28.

There are 12 integers in [1, 28] which are coprime to 28:

1, 3, 5, 9, 11, 13, 15, 17, 19, 23, 25, 27.
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Therefore, (
7

p

)
= −1 ⇐⇒ p ≡ 5, 11, 13, 15, 17, 23 mod 28.

4.

(a) (3 pts) State the classification theorem for primitive Pythagorean

triples: let x, y, z ∈ N with x odd. The following are equivalent:

(i) x2 + y2 = z2 and gcd(x, y, z) = 1.

(ii) there exist u, v ∈ N such that ... (complete the statement).

Note: Make sure not to skip any conditions; otherwise, you will

have difficulty solving parts (b) and (c).

(b) (5 pts) Given a positive EVEN integer b, denote by nb the number

of integer pairs (x, z) such that x > 0, z > 0, gcd(x, b, z) = 1 and

x2 + b2 = z2. Prove that nb > 0 if and only if b is divisible by 4.

(c) (4 pts) Find all positive even b for which nb = 1 (and prove your

answer).

Solution: (a) (ii) there exist u, v ∈ N such that u > v, u and v have different

parity, x = u2 − v2 and y = 2uv.

(b) By classification of primitive Pythagorean triples, nb > 0 if and only if b

can be written as 2uv where u and v have different parity. Clearly, if 4 - b,
there are no such u and v (since either u or v must be even, so 4 must divide

2uv). On the other hand, if 4 | b, we write b = 2ec with e ≥ 2 and c odd.

Then we can set u = 2e−1 and v = c if 2e−1 > c and u = c and v = 2e−1 if

2e−1 < c.

(c) By the same argument as in (b), nb = 1 ⇐⇒ b can be UNIQUELY

written as 2uv where u and v have different parity and u > v. We claim

that this happens ⇐⇒ b = 2e for some e ≥ 2 (that is, b is a power of 2

greater than or equal to 4).

Indeed, if b = 2e and b = 2uv, then both u and v are powers of 2 (possibly

the zero power 20 = 1), so the only way for u and v to have different parity

and satisfy u > v is to set u = 2e−1 and b = 1.

Suppose now that b is not a power of 2. Then b has an odd prime divisor

p. If 4 - b, then nb = 0 by (b). If 4 | b, we can write b = 2uv in two different

ways:

(i) u = b/2 and v = 1

(ii) (u = b/(2p) and v = p) if b/(2p) > p and (u = p and v = b/(2p)) if

b/(2p) < p.

In both case u > v and u and v have different parity.

5. Let R = Z[
√

3] = {a + b
√

3 : a, b ∈ Z}. Define the function N : R→ Z≥0
by N(a + b

√
3) = |(a + b

√
3)(a− b

√
3)| = |a2 − 3b2|.

(a) (2 pts) Prove that N(fg) = N(f)N(g) for all f, g ∈ R.
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(b) (3 pts) Let p ∈ N be a prime, and suppose that there exists no f ∈ R

with N(f) = p. Prove that p is irreducible as an element of R.

(c) (7 pts) Use (b) to show that if p ∈ N is a prime which is congruent

to 5 or 7 mod 12, then p is irreducible as an element of R.

Solution: (a) A conceptual way to prove this equality is described in Prob-

lem 2 of HW#9. Here we present a solution by brute force: suppose that

f = a + b
√

3 and g = c + d
√

3. Then fg = (ac + 3bd) + (ad + bc)
√

3, so

N(f)N(g) = |a2 − 3b2| · |c2 − 3d2| = |a2c2 − 3a2d2 − 3b2c2 + 9b2d2| while

N(fg) = |(ac+3bd)2−3(ad+bc)2| = |a2c2+6acbd+9b2d2−3a2d2−3b2c2−6adbc|

= |a2c2 + 9b2d2 − 3a2d2 − 3b2c2|.

Therefore, N(f)N(g) = N(fg).

(b) Suppose that p is not irreducible as an element of R. Clearly, p is

nonzero and not a unit in R (since 1
p 6∈ R), so the only possibility is that

p is a product of two non-units: p = fg. Taking norms of both sides, we

get p2 = N(fg) = N(f)N(g). Since f and g are non-units, both N(f) and

N(g) are greater than 1. Hence the only possibility is that N(f) = N(g) = p

which is impossible by assumption.

(c) By (b) we need to show that if p ≡ 5 or 7 mod 12, then the equation

|a2− 3b2| = p has no integer solutions in a and b. Suppose, on the contrary,

that such a and b exist. Then a2−3b2 = ±p, so in either case a2−3b2 ≡ ±5

mod 12 (since 7 ≡ −5 mod 12 and −7 ≡ 5 mod 12).

Case 1: a2−3b2 ≡ 5 mod 12. Then a2−3b2 ≡ 5 mod 3, whence a2 ≡ 2

mod 3, and we know that this is impossible.

Case 2: a2 − 3b2 ≡ −5 mod 12. Then a2 − 3b2 ≡ −5 mod 4, whence

a2 + b2 ≡ −5 ≡ 3 mod 4. Again this is impossible since x2 ≡ 0 or 1 mod 4

for all x ∈ Z.

6. Given positive integers m and n > 1, let f(n,m) be the number of

reduced solutions to the congruence

x2 ≡ m mod n.

(a) (9 pts) Assume that m is square-free. Prove that for any odd n > 1

either f(n,m) = 0 or f(n,m) = 2k for some integer k ≥ 0. Clearly

state any theorem you are referring to. Hint: First reduce to the

case when n is a prime power. Note: The assertion is actually true

for even n as well, but that takes more work to justify.

(b) (3 pts) Give an example (with proof) of a non-square-free integer m

for which the assertion of (a) is false for some odd n.

Solution: (a) By the general theory of polynomial congruences we know

that if pa11 . . . patt is the prime factorization of n, then f(n,m) =
∏t

i=1 f(paii ,m).

If we show that each f(paii ,m) is 0 or a power of 2, then the same is true for

f(n,m). Thus, it is sufficient to consider the case where n is a prime power.
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Let us start with the subcase when n itself is prime. Then, since x2 −m is

a quadratic polynomial which has a coefficient not divisible by n, we know

that x2 ≡ m mod n has 0, 1 or 2 reduced solutions.

Now suppose that n = pa where p is prime and a ≥ 2. Let f(x) = x2−m.

Subcase 1: p | m. We claim that the congruence f(x) ≡ 0 mod n has no

solution. Indeed, if x2 −m ≡ 0 mod pa for some x, then x2 −m = pal for

some l ∈ Z, so (since p | m), p must divide x as well. But then m = x2− pal

is divisible by p2, which contradicts the assumption that m is square-free.

Subcase 2: p - m. Let x0 be any reduced solution to the congruence

f(x) ≡ 0 mod p (as we just showed there are 0, 1 or 2 choices for x0).

Then p - x0 (for any choice of x0). Note that f ′(x0) = 2x0. Since p is odd,

p - 2, whence f ′(x0) 6≡ 0 mod p, so by the lifting theorem, x0 lifts to unique

reduced solution to f(x) ≡ 0 mod n. It follows that f(x) ≡ 0 mod n has

0, 1 or 2 reduced solutions (and we are done).

(b) Let m = 9 and n = 27. Then the congruence x2−m ≡ 0 mod n has

6 reduced solutions x = 3, 6, 12, 15, 21, 24.


