
Number Theory, Spring 2013. Midterm #2. Due Wednesday, April 10th

Directions: Provide complete arguments (do not skip steps). State clearly

and FULLY any result you are referring to. Partial credit for incorrect solu-

tions, containing steps in the right direction, may be given. If you are unable

to solve a problem (or a part of a problem), you may still use its result to

solve a later part of the same problem or a later problem in the exam.

Scoring system: Exam consists of 4 problems. Each of them is worth 10

points. All problems count towards your score.

Rules: You are NOT allowed to discuss midterm problems with anyone

else except me. You may ask me any questions about the problems (e.g. if

the formulation is unclear), but I may only provide minor hints. You may

freely use your class notes, previous homework assignments, and the class

textbook by Jones and Jones. The use of other books or any online sources

is not allowed.

1.

(a) Prove that the congruence x2 ≡ 2 mod 17 · 232 has a solution without

doing any computations (except the ones you can do in your head).

You may use any theorem from the book.

(b) Now find a solution to the above congruence. Show all your computa-

tions and do not use calculators.

2.

(a) Find an integer a with the property that for any prime p > 3, the

following holds: (
a

p

)
=

{
1 if p ≡ 1 mod 6
−1 if p ≡ 5 mod 6

(b) Use (a) to prove that there are infinitely many primes of the form 6n+1.

(Recall that you may use the result of (a) even if you did not solve it).

3. As usual, for an integer n > 1, we denote by Qn the group of quadratic

residues mod n (thought of as a subgroup of Un).
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(a) Prove that if n is a prime power, then Qn is always cyclic. Hint:

This can be proved essentially without computations by citing suitable

results from the book.

(b) Assume that n is divisible by two different primes of the form 4m+ 1.

Prove that Qn is NOT cyclic.

(c) Let p1 = 4n1 + 3, . . . , pk = 4nk + 3 be distinct primes such that the

numbers 2n1+1, . . . , 2nk+1 are pairwise coprime, and let n = p1 . . . pk.

Prove that Qn is cyclic.

(d) Prove that for any k ∈ N, there exist k primes satisfying the hypothesis

of (c). You are allowed to use the full statement of Dirichlet’s theo-

rem on primes in arithmetic progressions (not just the special cases we

proved in class/homework).

4. Let Λ be the set of all completely multiplicative functions from N to C,

and let ∆ be the set of all multiplicative functions f : N → C with the

property that f(n) = 0 whenever n is not square-free. Recall that according

to our definition, a multiplicative (or completely multiplicative) function g

must satisfy g(1) = 1

(a) Let h ∈ Λ, and let H = h−1, the Dirichlet inverse of h. Prove that

H(n) = h(n)µ(n) for all n and deduce that H ∈ ∆ (here h(n)µ(n) is

the regular multiplication).

(b) Now prove that for any f ∈ ∆, its Dirichlet inverse lies in Λ. Hint:

First guess the formula for f−1 in terms of f ; unlike part (a), in order

to write down the formula for f−1(n), you need to refer to the prime

factorization of n.

(c) Recall that the set M of all multiplicative functions forms a group with

respect to the Dirichlet product. Note that parts (a) and (b) simply

say that Λ = ∆−1, that is, Λ is precisely the set of inverses of elements

of ∆ (and vice versa). Now let 〈∆〉+ be the set of elements of M

representable as f1 ∗ . . . ∗ fk with each fi ∈ ∆ and k ≥ 1 (in group-

theoretic terminology, 〈∆〉+ is the semigroup generated by ∆). Prove

that the intersection 〈∆〉+ ∩ Λ contains just 1 element, the function I.

Hint: What can you say about the values of elements of 〈∆〉+ and Λ

on prime powers?
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