Homework #9. Due Wednesday, April 3rd Reading:

1. For this homework assignment: Chapter 8 and parts of Chapter 7.

2. For the next two classes: Chapter 9 (rough plan is to cover Sections 9.1-9.5)

Problems:

1. Recall that in Exercise 7.20 it was proved that for any $e \ge 1$ there are infinitely many primes of the form $2^e n + 1$, with $n \in \mathbb{N}$, in particular there are infinitely primes of the form 8n + 1. The goal of this exercise is to use Legendre symbols to prove that there are infinitely many primes of the form 8n+3, 8n+5 and 8n+7, thereby completing the proof of Dirichlet's theorem for a = 8.

The following facts are (very) relevant for this problem:

(i) If p is an odd prime, the Legendre symbol $\binom{2}{p}$ is equal to 1 if $p \equiv 1$ or 7 mod 8 and is -1 if $p \equiv 3$ or 5 mod 8;

(ii) $x^2 \equiv 1 \mod 8$ for any odd x.

- (a) Prove that there are infinitely many primes of the form 8n + 5. **Hint:** Assume there are only finitely many such primes p_1, \ldots, p_k , let $m = 4(p_1 \ldots p_k)^2 + 1$ and show that m has a prime factor of the form 8n + 5. This is essentially a combination of the methods used to prove that there are infinitely many primes of the form 4n + 3 and infinitely many primes of the form 4n + 1, discussed in class.
- (b) Now prove that there are infinitely many primes of the form 8n + 7. **Hint:** Use a trick similar to (a) and (i) and (ii) above.
- (c) Finally prove that there are infinitely many primes of the form 8n + 3. **Hint:** First find an integer $m \in \mathbb{Z}$ such that for any odd prime p we have $\left(\frac{m}{p}\right) = 1 \iff p \equiv 1 \text{ or } 3 \mod 8$.
- 2. Read about the Jacobi symbol on wikipedia at http://en.wikipedia.org/wiki/Jacobi_symbol
 - (a) Verify properties 4), 5) and 6) on the wikipedia page.

- (b) Prove that if the Jacobi symbol $\left(\frac{a}{n}\right)$ is equal to -1, then a is NOT a quadratic residue mod n.
- (c) Give an (explicit) example showing that the Jacobi symbol $\left(\frac{a}{n}\right)$ may equal 1 even when a is not a quadratic residue mod n.

3. Let τ and σ be the functions defined on page 145 of the book. Use multiplicativity of these functions to prove the following results:

- (a) $\tau(n)$ is odd $\iff n$ is a perfect square
- (b) $\sigma(n)$ is odd $\iff n$ is a perfect square or 2 times a perfect square

4. Let \mathbb{PP} be the set of all prime powers (where 1 is not considered a prime power), and let $f : \mathbb{PP} \to \mathbb{C}$ be an arbitrary function. Extend f to a function $F : \mathbb{N} \to \mathbb{C}$ by setting f(1) = 1 and

$$F(p_1^{\alpha_1} \dots p_k^{\alpha_k}) = f(p_1^{\alpha_1}) \dots f(p_k^{\alpha_k})$$

whenever p_1, \ldots, p_k are distinct primes (so in particular, F restricted to \mathbb{PP} is equal to f). Prove that F is multiplicative.

5. A function $f : \mathbb{N} \to \mathbb{C}$ is called *completely multiplicative* if f(1) = 1 and f(mn) = f(m)f(n) for all $m, n \in \mathbb{N}$. (Note that the book does not require f(1) = 1 in the definition of a multiplicative or completely multiplicative function. However, it is easy to see that the only function which is multiplicative according to the book but does not satisfy f(1) = 1 is the zero function).

- (a) Formulate and prove the analogue of problem 4 for completely multiplicative functions.
- (b) Show by example that the set of completely multiplicative functions is NOT closed under the Dirichlet product *
- (c) (stronger version of (b)). Let f be a completely multiplicative function different from I (where, as before, I(1) = 1 and I(n) = 0 for n > 1). Prove that f * f is NOT completely multiplicative.

6. Fix an integer $m \ge 1$. As in class, for $n \ge 1$, we denote by A_n the set of all aperiodic words of length n in the alphabet with m symbols. Recall that in class we used Möbius inversion to show that

$$|A_n| = \sum_{d|n} m^d \mu(\frac{n}{d}). \tag{***}$$

- (a) A word w is called *l*-periodic if $w = v^k$ for some word v of length l (it is not required that v is aperiodic; in other words, the minimal period of w need not be precisely l). Prove that if w is l_1 -periodic and l_2 -periodic, then it is $gcd(l_1, l_2)$ -periodic. **Hint:** To give a clean (yet short) argument, think of w as being written around a circle.
- (b) Read about the inclusion-exclusion principle (see Exercise 5.10 in the book or look it up online).
- (c) Use the inclusion-exclusion principle to prove the formula (***) above. **Hint:** Given $n \in \mathbb{N}$, let p_1, \ldots, p_k be the distinct prime divisors of n, and apply the inclusion-exclusion principle to the sets $W_{n,n/p_1}, \ldots, W_{n,n/p_k}$ where $W_{n,l}$ is the set of *l*-periodic words of length n.