Homework #5. Due Wednesday, February 20th, in class
Reading:
1. For this homework assignment: Chapter 5 and Sections 6.1 - 6.2.
2. For the next two classes: Chapter 6.
Problems:

1. Let p be a prime. For a nonzero integer x, denote by ord,(z) the largest
integer a s.t. p* divides = (if p 1 =, we set ord,(z) = 0). We also put
ord,(0) = oo, so that we get a function ord : Z — Zso U {oco} Prove the
following properties of the ord function:

(i) ord,(zy) = ordy(x) + ord,(y)
(ii) ord,(x +y) > min{ord,(z), ord,(y)}
(ili) ord,(z +y) = min{ord,(x), ord,(y)} whenever ord,(x) # ord,(y)
2. Let n > 2 be an even integer. Prove that for any a € Z the congruence

22+ 32+ a =0 mod n always has an even number of solutions.

3. Let n,m be positive integers and d = ged(m,n). Prove that
¢(mn)o(d) = p(m)e(n)d.

4. In this question we investigate the following question: given n € N, how
many solutions can the equation ¢(z) = n have?

(a) Prove that for any n € N, the equation ¢(x) = n has only finitely many
solutions.

(b) Read about Fermat primes in Chapter 2. Let F,, = 22" + 1 be the
n'™® Fermat number. It is easy to verify directly that F), is prime for
0 < n < 4, and it is known that F,, is composite for 5 < n < 32.
Use these facts to compute the number of solutions to the equation
¢($) — 22013.

(c¢) Let n = 2pg where p and ¢ are distinct odd primes. Prove that the
equation ¢(x) = n has a solution if and only if at the least one of the
following holds: ¢ = 2p+ 1, p = 2q+ 1 or 2pq + 1 is prime. Also prove
that the number of solutions is equal to 0, 2 or 4.
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5. Let Ry,..., R; be commutative rings with 1 and R = Ry X ... X Ry be
their direct product.

(a) Prove that R* = Ry x ... x R} as subsets of R, that is, an element
(r1,...,7%) € R lies in R* if and only if r; € R for each i.

(b) Prove that R* and Ry x ... X R} are isomorphic as groups. Hint:
there is not much to prove.

6. Let R and S be commutative rings with 1, and let ¢ : R — S be a
surjective ring homomorphism satisfying ¢(1g) = 1s.

(a) Prove that ¢(R*) C S*
(b) Give an example showing that ¢(R*) may be strictly smaller than S*.

7. Keeping the notations of Problem 4, assume that R = Z, and S = Z,,
where m | n, and ¢ : R — S is defined by ¢([z],) = [z],, (we verified in class
that such ¢ is well defined). Prove that

o(Uy) = Uy,

Hint: First consider the case when n is a prime power. In the general case
write n = pi*...p* (where py,...,p are distinct primes and each a; > 1)
and m = p . .. pZ’“ and consider the diagram

Up —= Uy X ... X Uy (1)

4 |

f2
Um—>Ub1 ><...><Ub,c
Pq Py

where the maps f1, fo, f3 and f; are defined by

fillaln) = (el - ]o0)
Folleh) = (s [l )

fo(laln) = el

Fullelyns - Balyee) = (@l o)

Note that this diagram is commutative, that is, fisfi = fofs as maps. Use
what you already know about fi, fo and f; to prove that f3 is surjective
(which is what you need to show).



8. In this problem you can use the following result which will be proved at
the beginning of class on Monday, February 18:

Proposition 10.1: Let p be an odd prime, a > 2 an integer and m =
p*2(p —1). Then for any x € Z either x™ # 1 mod p® or (z +p)™ # 1
mod p®.

Now let x € Z, and assume that x is a primitive root mod p.

(i) Prove that the orders of elements [z], and [z + p|,e of Uy are both
divisible by p — 1.

(ii) Use (i) and Proposition 10.1 to prove that at least one of the elements x
and x 4 p is a primitive root mod p® (this result is proved in a different
way in the book).



