Homework #3. Due Wednesday, February 6th, in class Reading:

1. For this homework assignment: Sections 3.5 and parts of Chapter 4.

2. For the next two classes: Sections 4.3, 4.1 and 5.1. Also review the definition of the ring of congruence classes \mathbb{Z}_n (see Chapter 3).

Problems:

1. Let p, q and r be distinct primes and let a, b, c be integers. Consider the system of congruences

$$x \equiv a \mod p^3 q; \quad x \equiv b \mod p^2 q^2 r; \quad x \equiv c \mod pq^3.$$

- (a) Prove that the system has a solution if and only if $a \equiv b \mod p^2 q$ and $b \equiv c \mod pq^2$.
- (b) Let p = 5, q = 2, r = 3. Assuming hypotheses of (a) hold, find a formula for the general solution to the system (in terms of a, b and c).

2. Find all solutions mod 30 to the congruence $x^2 \equiv x \mod 30$ making as few computations as possible. In particular, do not solve more than three systems of linear congruences in the course of your proof.

- 3.
 - (a) Find the general solution to the congruence $x^3 \equiv 2 \mod 5^3$ using the method introduced in class.
 - (b) Prove that the congruence $x^4 + x \equiv 7 \mod 5^2$ has no solutions
 - (c) Prove that for any integer k s.t. $k \equiv 2 \mod 5$, the congruence $x^4 + x \equiv k \mod 5^2$ has either no solutions or more than one solution modulo 5^2 .
- 4. Let p be a prime.
 - (a) Use Problem 8 from Homework#2 to prove Fermat's little theorem: $x^p \equiv x \mod p$ for any $x \in \mathbb{Z}$.
 - (b) Deduce from (a) that $x^{p-1} \equiv 1 \mod p$ whenever gcd(x,p) = 1.

Note that a completely different proof of these results is given in Section 4.1. 5. Use Problem 4 to prove that $x^{13} \equiv x \mod 70$ for any $x \in \mathbb{Z}$. 6.

- (a) Prove that $x^2 \equiv 1 \mod 24$ for any x such that gcd(x, 24) = 1.
- (b) Let m and k be positive integers such that gcd(m, k) = 1. Let $x \in \mathbb{Z}$ be such that gcd(x, m) = 1. Prove that there exists $y \in \mathbb{Z}$ such that $y \equiv x \mod m$ and gcd(y, k) = 1. Deduce that any such y also satisfies gcd(y, m) = 1 and hence also gcd(y, mk) = 1. Hint: use CRT.
- (c) Let S be the set of all positive integers n such that $x^2 \equiv 1 \mod n$ for any x with gcd(x,n) = 1 (for instance, $24 \in S$ by (a)). Use (b) to prove that if $n \in S$ and $n = p_1^{a_1} \dots p_k^{a_k}$ with p_1, \dots, p_k distinct primes, then $p_i^{a_i} \in S$.
- (d) Prove that if $m = p^k$ where p is prime, then there are precisely $p^{k-1}(p-1)$ integers between 1 and $m = p^k$ which are coprime to p.
- (e) Now use (c), (d) and the result of Example 3.18 from the book to prove that 24 is the largest element of S.