Homework #11. Due on Tuesday, April 30th
Reading:
1. For this homework assignment: class notes on Pell’s equation and Chapter
11, Sections 11.1-11.4.

Some terminology and notations on continued fractions:

Let ag,aq,as,... be a finite or infinite sequence of real numbers satisfying

a, > 1 for n > 0. The associated continued fraction ag + ﬁ is denoted
ag+t...

by [ao; a1, as,...]. In the case of a finite continued fraction [ag; ay, ..., ay],

the number n will be called the height of the continued fraction.

From now on assume that the sequence {a,} is infinite. The numbers
Co = lag], C1 = [ap; a1}, Cy = [ag; a1, as), . .. are called the convergents of the
continued fraction [ag; ay, . ..]. Define two sequences { A, },>_1 and { B, },>_1
by A1=1, B_1=0, Ay =ag, Bp =1 and

Api1 = ap1 Ay + Ay and B,y = api1 B, + B, forn > 0.

In class we proved that C,, = g—z for all n > 0.
Problems:

1. Prove that a real number « cannot be represented by two distinct inte-
ger continued fractions, if we require that for a finite continued fraction of
positive height, the last entry must be different from 1. Hint: Assume that
lag; ay,...,] = [bo;by,...,] are two integer continued fractions (satisfying the
above restriction) representing the same real number. First show that ag = by
and then proceed inductively.

2. Let a € R, and assume that the continued fraction for « is infinite
periodic. Prove that « is a quadratic irrational, that is, a € Q, but « is a
root of a nonzero quadratic polynomial with integer coefficients. Hint: Start
with the case when the continued fraction for « is purely periodic, that is,
the periodic part starts from the very beginning (o = [ag, .., ar_1]). Start
by writing down some equation that o must satisfy (it will involve a finite
continued fraction) and then conclude that « satisfies a quadratic equation.
Then use the result in the purely periodic case to establish the general case.

3. Consider an infinite continued fraction [ag; ai, as, .. .|, and let A,, B,, and
C,, be defined as above.



(i) Prove that A, 1B, — B,_1A, = (=1)" for all n > 0.

)
(ii) Prove that B, > B, for allm > 0 and B,, > 2B,,_ for all n > 2.
(iii) Prove that |C), — Cy1| < 5= for all n > 0.

(iv) Deduce from (iii) that the sequence {C,} is Cauchy and therefore con-
verges.

Recall that the algorithm for solving Pell’s equation using continued fractions
was discussed at the end of class on April 22nd. This algorithm is also
described in Problems 7-9 here:

http://www.math.ubc.ca/~gor/pell.pdf

4. Find a non-trivial solution to Pell’s equation x? — dy? = 1 in each of the
following cases:

(i) d=(a®* —1) for some a € N
(i) d = a* + 1 for some a € N
(iii) d = a(a + 1) for some a € N

Hint: In case (i) a solution is easy to guess; in cases (ii) and (iii) one can
also guess; alternatively you can use continued fractions.

5. Find a solution Pell’s equation z? — 14y? = 1 in two ways:

(i) Computing fractional parts of kv/14 for small values of k (you may use
a calculator)

(ii) Using continued fractions

6. Use continued fractions to find a solution to Pell’s equation 2% — dy? = 1
for d =19 and d = 41.

7. Prove that for every n € N there exists a solution to the equation 22 —3y? =
1 satisfying 10" < x < 10""!. Hint: How are all solutions obtained from the

fundamental solution?
8. Let (z,y,2) be a primitive integer solution for the equation z* + 2y* =
22, Prove that there exist integers u and v such that (z,y,2) = (2u® —

v2, 2uv, 2u?® + v?) or (u? — 20v%, 2uv, u? + 20?).


http://www.math.ubc.ca/~gor/pell.pdf

