
Homework #11. Due on Tuesday, April 30th

Reading:

1. For this homework assignment: class notes on Pell’s equation and Chapter

11, Sections 11.1-11.4.

Some terminology and notations on continued fractions:

Let a0, a1, a2, . . . be a finite or infinite sequence of real numbers satisfying

an ≥ 1 for n > 0. The associated continued fraction a0 + 1
a1+

1
a2+...

is denoted

by [a0; a1, a2, . . .]. In the case of a finite continued fraction [a0; a1, . . . , an],

the number n will be called the height of the continued fraction.

From now on assume that the sequence {an} is infinite. The numbers

C0 = [a0], C1 = [a0; a1], C2 = [a0; a1, a2], . . . are called the convergents of the

continued fraction [a0; a1, . . .]. Define two sequences {An}n≥−1 and {Bn}n≥−1

by A−1 = 1, B−1 = 0, A0 = a0, B0 = 1 and

An+1 = an+1An + An−1 and Bn+1 = an+1Bn +Bn−1 for n ≥ 0.

In class we proved that Cn = An

Bn
for all n ≥ 0.

Problems:

1. Prove that a real number α cannot be represented by two distinct inte-

ger continued fractions, if we require that for a finite continued fraction of

positive height, the last entry must be different from 1. Hint: Assume that

[a0; a1, . . . , ] = [b0; b1, . . . , ] are two integer continued fractions (satisfying the

above restriction) representing the same real number. First show that a0 = b0
and then proceed inductively.

2. Let α ∈ R, and assume that the continued fraction for α is infinite

periodic. Prove that α is a quadratic irrational, that is, α 6∈ Q, but α is a

root of a nonzero quadratic polynomial with integer coefficients. Hint: Start

with the case when the continued fraction for α is purely periodic, that is,

the periodic part starts from the very beginning (α = [a0, . . . , ak−1]). Start

by writing down some equation that α must satisfy (it will involve a finite

continued fraction) and then conclude that α satisfies a quadratic equation.

Then use the result in the purely periodic case to establish the general case.

3. Consider an infinite continued fraction [a0; a1, a2, . . .], and let An, Bn and

Cn be defined as above.
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(i) Prove that An−1Bn −Bn−1An = (−1)n for all n ≥ 0.

(ii) Prove that Bn ≥ Bn−1 for all n ≥ 0 and Bn ≥ 2Bn−2 for all n ≥ 2.

(iii) Prove that |Cn − Cn+1| ≤ 1
2n

for all n ≥ 0.

(iv) Deduce from (iii) that the sequence {Cn} is Cauchy and therefore con-

verges.

Recall that the algorithm for solving Pell’s equation using continued fractions

was discussed at the end of class on April 22nd. This algorithm is also

described in Problems 7-9 here:

http://www.math.ubc.ca/~gor/pell.pdf

4. Find a non-trivial solution to Pell’s equation x2 − dy2 = 1 in each of the

following cases:

(i) d = (a2 − 1) for some a ∈ N

(ii) d = a2 + 1 for some a ∈ N

(iii) d = a(a+ 1) for some a ∈ N

Hint: In case (i) a solution is easy to guess; in cases (ii) and (iii) one can

also guess; alternatively you can use continued fractions.

5. Find a solution Pell’s equation x2 − 14y2 = 1 in two ways:

(i) Computing fractional parts of k
√

14 for small values of k (you may use

a calculator)

(ii) Using continued fractions

6. Use continued fractions to find a solution to Pell’s equation x2 − dy2 = 1

for d = 19 and d = 41.

7. Prove that for every n ∈ N there exists a solution to the equation x2−3y2 =

1 satisfying 10n < x < 10n+1. Hint: How are all solutions obtained from the

fundamental solution?

8. Let (x, y, z) be a primitive integer solution for the equation x2 + 2y2 =

z2. Prove that there exist integers u and v such that (x, y, z) = (2u2 −
v2, 2uv, 2u2 + v2) or (u2 − 2v2, 2uv, u2 + 2v2).
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