
Number Theory, Fall 2016. Solutions to Test #4.

1. In all parts of this problem make sure to include all the calculations.

(a) (4 pts) Find a non-trivial solution to the equation x2 − 23y2 = 1

(b) (4 pts) Find a non-trivial solution to the equation x2 − 53y2 = 1

(c) (2 pts) Let k ∈ N. Compute the continued fraction [k; k, k, k, . . .]

Solution: (a) The continued fraction for
√

23 is [4; 1, 3, 1, 8]. It has even

period 4, so the continued fraction [4; 1, 3, 1] gives us a solution. We have

[4; 1, 3, 1] = [4; 1, 4] = [4; 5/4] = 24/5, so (24, 5) is a solution.

(b) The continued fraction for
√

53 is [7; 3, 1, 1, 3, 14]. It has odd period

5, so the continued fraction [7; 3, 1, 1, 1] give us an element of Z[
√

53] of norm

−1. We have [7; 3, 1, 1, 3] = [7; 3, 1, 4/3] = [7; 3, 7/4] = [7; 25/7] = 182/25,

so N(182 + 25
√

53) = −1 and therefore N((182 + 25
√

53)2) = 1. Since

(182 + 25
√

53)2 = (1822 + 252 · 53 + 50 · 182
√

53) = 66249 + 9100
√

53, the

pair (66249, 9100) is a solution.

2. (10 pts) In all parts of this problem by a solution we mean an integer

solution

(a) Let d, c ∈ Z where d > 0 and d is not a perfect square. Prove that if

the equation x2 − dy2 = c has a solution, then it has infinitely many

solutions.

(b) Let p be a prime such that p ≡ 3 mod 4. Prove that the equation

x2 − py2 = p has no solutions.

(c) Assume that d ∈ N is not a perfect square and that the continued

fraction for
√
d has odd period. Prove that x2−dy2 = d has a solution.

Solution: (a) This part should have had an extra hypothesis c 6= 0 (other-

wise the statement is false). So assume that c 6= 0 and there exist a, b ∈ Z
such that a2−db2 = c. Thus, if y = a+ b

√
d, then N(y) = c (note that y 6= 0

since c 6= 0).

Since d > 0 is not a perfect square, the set Pell(d) = {z ∈ Z[
√
d] :

N(z) = 1} is infinite. For any z ∈ Pell(d) we have N(zy) = N(z)N(y) =
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1 · c = c. If z1 6= z2, then z1y 6= z2y (since y 6= 0), so there are infinitely

many elements of norm c in Z[
√
d] and thus infinitely many solutions to the

equation x2 − dy2 = c.

(b) Since p ≡ 3 ≡ −1 mod 4, we have x2− py2 ≡ (x2− (−y2)) = x2 + y2

mod 4. Since x2, y2 ≡ 0 or 1 mod 4, we have x2 + y2 ≡ 0, 1, 2 mod 4, so

x2 + y2 6≡ p mod 4.

(c) Since the continued fraction for
√
d has odd period, we know that

there exist a, b ∈ Z such that a2 − db2 = −1. Multiplying both sides by −d,

we get (db)2 − da2 = d, so the pair (db, a) is a solution to x2 − dy2 = d.

3. (10 pts) Find all primitive integer solutions to the equation x2 +3y2 =

z2 (as usual (x, y, z) is primitive if gcd(x, y, z) = 1).

We claim that every primitive solution has the form (a) or (b) below and

all primitive solutions can be obtained in this way.

(a) (x, y, z) = (±(3u2−v2),±2uv,±(3u2+v2)) where u, v ∈ Z are coprime,

have different parity and 3 - v (the signs for x, y and z are chosen

independently)

(b) (x, y, z) = (±3u2−v2
2

,±uv,±3u2+v2

2
) where u, v ∈ Z are coprime, both

odd and 3 - v.

Part I: First we will show that each of the triples in (a) and (b) is a

primitive solution. By direct verification we see that each (x, y, z) of the

form (a) or (b) satisfies the equation x2 + 3y2 = z2. Note that in case (b)

the assumption that u and v are both odd ensures that x, y, z ∈ Z. Now let

us prove that all such triples are primitive.

Suppose, by way of contradiction, that there exists a prime p that divides

±(3u2 − v2),±2uv and ±(3u2 + v2) where u, v are as in (a). Then p | 6u2 =

(3u2 − v2 + 3u2 + v2) and p | 2v2 = (3u2 + v2 − (3u2 − v2)). Since 3 - v,

it follows from p | 2v2 that p 6= 3, hence p | 6u2 implies p | 2u2. Thus, p

divides 2u2 and 2v2, so p | gcd(2u2, 2v2) = 2gcd(u, v)2 = 2, so p = 2. But

u and v have different parity, so 3u2 − v2 is odd and hence 2 - 3u2 − v2, a

contradiction.

Similarly, we argue that each triple in (b) is primitive – if we assume

that some prime p divides all three numbers x, y, z in (b), arguing as in the

previous paragraph, we get p | gcd(u2, v2) = gcd(u, v)2 = 1, a contradiction.

Part II: Now we will show that each primitive solution comes from (a)

or (b) above. First note that there are no primitive solutions with z = 0 or

x = 0, and the only primitive solutions with y = 0 are (±1, 0,±1), which

come from (a) with u = 0 and v = 1. Thus, it suffices to find all primitive

solutions with x, y, z nonzero; moreover, since each of the sets (a) and (b)
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is invariant under the sign change in each coordinate, it is enough to find

primitive solutions (x, y, z) with x, y, z positive. Clearly, we must have x < z

for each such solution.

So, let (x, y, z) be a primitive solution with x, y, z > 0. First we claim

that gcd(x, z) = 1. If not, then there is a prime p which divides both x and

z. But then p2 divides z2−x2 = 3y2 which forces p | y, in which case (x, y, z)

is not primitive. Since gcd(x, z) = 1, by a HW#1 problem we must have

gcd(z − x, z + x) = 1 or 2.

Next we note that x must be odd. Indeed, if x is even, then y and z are

both odd (in which case x2 + 3y2 ≡ 3 mod 4 while z2 ≡ 1 mod 4) or y and

z are both even (in which case (x, y, z) is not primitive).

Since x is odd, exactly one of y and z is odd, and we consider two cases

accordingly.

Case 1: z is even, y is odd. Rewrite our equation as

3y2 = (z − x)(z + x). (∗ ∗ ∗)

We know that gcd(z − x, z + x) = 1 or 2; moreover z − x and z + x are both

odd, so we must have gcd(z − x, z + x) = 1. From (***) we get that exactly

one of the numbers z − x and z + x is divisible by 3.

Subcase 1: 3 | (z−x). Then we can rewrite (***) as y2 = z−x
3

(z+x), with

both factors on the right-hand side still integers. Since gcd(z−x, z+x) = 1,

we clearly have gcd( z−x
3
, z + x) as well. Moreover, z−x

3
and z + x are both

positive. A product of two coprime positive integers is a perfect square if

and only if each of them is a perfect square, so there exist u, v ∈ N such that
z−x
3

= u2 and z + x = v2, and (***) yields y2 = u2v2, whence y = uv (since

y > 0). Solving z−x
3

= u2 and z + x = v2 for x and z, we get z = 3u2+v2

2

and x = 3u2−v2
2

. Clearly, we must have gcd(u, v) = 1 and 3 - v, for otherwise

(x, y, z) is not primitive. Also u and v must have the same parity for x to

be an integer, and since u and v are coprime, they must both be odd. Thus

(x, y, z) is of the form described in (b).

Subcase 2: 3 | (z + x). Then we can rewrite (***) as y2 = (z − x) z+x
3

,

with both factors on the right-hand side still integers. Arguing similarly to

subcase 1, we conclude that there exist u, v ∈ N such that x = v2−3u2

2
=

−3u2−v2
2

, y = uv and z = 3u2+v2

2
, and then deduce (by the same argument)

that u, v must satisfy the restrictions from (b).

Case 2: z is odd, y is even. In this case y, z− x and z+ x all even, so we

can rewrite our equation as

3
(y

2

)2
=
z − x

2
· z + x

2
,

with all factors above being integers. This time gcd(z − x, z + x) = 2, so

gcd( z−x
2
, z+x

2
) = 1. Again 3 divides exactly one of the numbers z−x

2
and z+x

2
,
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so splitting into two subcases and arguing similarly to Case 1, we conclude

that (x, y, z) must be of the form described in (a).

4. (10 pts) Let Λ be the set of all completely multiplicative functions

from N to C, and let ∆ be the set of all multiplicative functions f : N → C
with the property that f(n) = 0 whenever n is not square-free. Recall that

according to our definition, a multiplicative (or completely multiplicative)

function g must satisfy g(1) = 1

(a) Let h ∈ Λ, and let H = h−1, the Dirichlet inverse of h. Prove that

H(n) = h(n)µ(n) for all n and deduce that H ∈ ∆ (here h(n)µ(n) is

the regular multiplication).

(b) Now prove that for any f ∈ ∆, its Dirichlet inverse lies in Λ.

(c) Recall that the set M of all multiplicative functions forms a group with

respect to the Dirichlet product. Note that parts (a) and (b) simply

say that Λ = ∆−1, that is, Λ is precisely the set of inverses of elements

of ∆ (and vice versa). Now let 〈∆〉+ be the set of elements of M

representable as f1 ∗ . . . ∗ fk with each fi ∈ ∆ and k ≥ 1 (in group-

theoretic terminology, 〈∆〉+ is the semigroup generated by ∆). Prove

that the intersection 〈∆〉+ ∩ Λ contains just 1 element, the function I.

Hint: What can you say about the values of elements of 〈∆〉+ and Λ

on prime powers?

Solution: (a) It is more convenient to switch how H is defined and what we

have to prove about it, that is, we will redefine H by the formula H(n) =

h(n)µ(n) and show that, defined in this way, H is the Dirichlet inverse of h,

that is H ∗ h = I. We have

(H ∗ h)(n) =
∑
d|n

h(d)µ(d)h(n/d) =
∑
d|n

µ(d)h(n) = h(n)
∑
d|n

µ(d),

where the second equality holds by complete multiplicativity of h.

Since by definition µ is the Dirichlet inverse of the function u defined by

u(n) = 1 for all n, we have
∑

d|n µ(d) =
∑

d|n µ(d)u(n/d) = (µ∗u)(n) = I(n).

Thus, (H ∗ h)(1) = h(1)I(1) = 1 and (H ∗ h)(n) = h(n)I(n) = 0 for n > 1,

so H ∗ h = I, as desired.

The other assertions of (a) are now clear – H is multiplicative since

H = h−1 and we proved in class that multiplicative functions form a group

(alternatively, it is clear that the pointwise product of two multiplicative

functions is multiplicative, and by definition H is the pointwise product of h

and µ). Also, H(n) = 0 whenever n is not square-free since µ has the same

property. Thus, by definition H ∈ ∆.
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(b) Since f is multiplicative, f−1 is also multiplicative. It is easy to see

that a multiplicative function g is completely multiplicative if and only if

g(pa) = g(p)a for every prime p and integer a ≥ 1. Thus, we just need to

check that f−1 has the latter property.

For a ≥ 1 and a prime p we have (f−1 ∗ f)(pa) = I(pa) = 0; on the other

hand, by definition,

(f−1 ∗ f)(pa) =
a∑

b=0

f−1(pb)f(pa−b) =

f−1(pa−1)f(p) + f−1(pa)f(1) = f−1(pa−1)f(p) + f−1(pa),

where the second equality holds since f ∈ ∆.

Therefore, f−1(pa) = −f−1(pa−1)f(p). We also know that f−1(1) = 1

(since f−1 is multiplicative). From these equalities by straightforward induc-

tion we get

f−1(pa) = (−1)af(p)a for all a ≥ 1.

In particular, f−1(pa) = (−f(p))a = (f−1(p))a, as desired.

(c) Clearly, I ∈ 〈∆〉+ ∩ Λ. Conversely, take any f ∈ 〈∆〉+ ∩ Λ, that is, f

is completely multiplicative and f = f1 ∗ . . . ∗ fk for some f1, . . . , fk ∈ ∆. By

straightforward induction on k we get the following formula for the Dirichlet

product of k functions:

f(n) = (f1 ∗ . . . ∗ fk)(n) =
∑

n=d1...dk

f1(d1) . . . fk(dk).

Now let n = pk+1 for some prime p. We get

f(pk+1) =
∑

e1+...+ek=k+1

f1(p
e1) . . . fk(pek).

For each term in the above sum, at least one of the ei’s is ≥ 2, and therefore

fi(p
ei) = 0 (as fi ∈ ∆). Thus, each term (and hence the entire sum) is equal

to 0.

Thus, f(pk+1) = 0. Since f is completely multiplicative, f(pk+1) =

f(p)k+1, so f(p) = 0 for each prime p. Therefore, again since f is completely

multiplicative, for any n > 1 we have f(n) = f(pa11 . . . pakk ) = f(p1)
a1 . . . f(pk)ak =

0. Therefore, f = I.
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