Number Theory, Fall 2016. Solutions to Test #4.

1. In all parts of this problem make sure to include all the calculations.
(a) (4 pts) Find a non-trivial solution to the equation 2% — 23y? = 1
(b) (4 pts) Find a non-trivial solution to the equation x? — 53y? = 1

(c) (2 pts) Let k € N. Compute the continued fraction [k; k, k, k, .. ]

Solution: (a) The continued fraction for v/23 is [4;1,3,1,8]. It has even
period 4, so the continued fraction [4;1,3,1] gives us a solution. We have
[4;1,3,1] = [4;1,4] = [4;5/4] = 24/5, so (24,5) is a solution.

(b) The continued fraction for /53 is [7;3,1, 1,3, 14]. It has odd period
5, so the continued fraction [7;3, 1,1, 1] give us an element of Z[\/E)_B} of norm
—1. We have [7;3,1,1,3] = [7;3,1,4/3] = [7;3,7/4] = [7;25/7] = 182/25,
so N(182 + 25v/53) = —1 and therefore N((182 + 25v/53)%) = 1. Since
(182 + 25v/53)2 = (1822 + 252 - 53 + 50 - 182/53) = 66249 + 9100v/53, the
pair (66249,9100) is a solution.

2. (10 pts) In all parts of this problem by a solution we mean an integer
solution

(a) Let d,c € Z where d > 0 and d is not a perfect square. Prove that if
the equation 22 — dy? = ¢ has a solution, then it has infinitely many
solutions.

(b) Let p be a prime such that p = 3 mod 4. Prove that the equation

2% — py? = p has no solutions.

(c) Assume that d € N is not a perfect square and that the continued
fraction for v/d has odd period. Prove that z2 —dy? = d has a solution.

Solution: (a) This part should have had an extra hypothesis ¢ # 0 (other-
wise the statement is false). So assume that ¢ # 0 and there exist a,b € Z
such that a® —db? = c. Thus, if y = a+bv/d, then N(y) = ¢ (note that y # 0
since ¢ # 0).

Since d > 0 is not a perfect square, the set Pell(d) = {z € Z[Vd] :
N(z) = 1} is infinite. For any z € Pell(d) we have N(zy) = N(2)N(y) =

1



1-c=c If 21 # 2, then 21y # 20y (since y # 0), so there are infinitely
many elements of norm ¢ in Z[v/d] and thus infinitely many solutions to the
equation 2% — dy? = c.

(b) Since p =3 = —1 mod 4, we have 2% — py? = (2° — (—y?)) = 2° + 32
mod 4. Since 2%,y = 0 or 1 mod 4, we have 22 + y?> = 0,1,2 mod 4, so
2 +y* # p mod 4.

(¢) Since the continued fraction for v/d has odd period, we know that
there exist a,b € Z such that a®> — db* = —1. Multiplying both sides by —d,
we get (db)? — da? = d, so the pair (db, a) is a solution to z? — dy? = d.

3. (10 pts) Find all primitive integer solutions to the equation z%+ 3y* =
2? (as usual (x,y, 2) is primitive if ged(z,y, z) = 1).

We claim that every primitive solution has the form (a) or (b) below and
all primitive solutions can be obtained in this way.

(a) (z,y,2) = (£(3u?—v?), £2uv, +(3u*+v?)) where u, v € Z are coprime,
have different parity and 3 t v (the signs for z,y and z are chosen
independently)

(b) (x,y,2) = (i#,iuv,i#) where u,v € Z are coprime, both
odd and 31 v.

Part I: First we will show that each of the triples in (a) and (b) is a
primitive solution. By direct verification we see that each (z,y,z) of the
form (a) or (b) satisfies the equation z? 4+ 3y* = 22. Note that in case (b)
the assumption that v and v are both odd ensures that x,y, 2z € Z. Now let
us prove that all such triples are primitive.

Suppose, by way of contradiction, that there exists a prime p that divides
+(3u® — v?), £2uv and +(3u? 4+ v?) where u, v are as in (a). Then p | 6u* =
(Bu? — v? + 3u? + v?) and p | 2v* = (3u? + v? — (3u® — v?)). Since 3 1 v,
it follows from p | 2v? that p # 3, hence p | 6u? implies p | 2u®. Thus, p
divides 2u? and 2v?, so p | ged(2u?, 2v?) = 2gcd(u,v)* = 2, so p = 2. But
u and v have different parity, so 3u? — v? is odd and hence 2 t 3u® — v?, a
contradiction.

Similarly, we argue that each triple in (b) is primitive — if we assume
that some prime p divides all three numbers z,y, z in (b), arguing as in the
previous paragraph, we get p | ged(u?,v?) = ged(u,v)? = 1, a contradiction.

Part II: Now we will show that each primitive solution comes from (a)
or (b) above. First note that there are no primitive solutions with z = 0 or
x = 0, and the only primitive solutions with y = 0 are (£1,0,+1), which
come from (a) with u = 0 and v = 1. Thus, it suffices to find all primitive
solutions with z,y, z nonzero; moreover, since each of the sets (a) and (b)



is invariant under the sign change in each coordinate, it is enough to find
primitive solutions (z,y, z) with x,y, z positive. Clearly, we must have z < z
for each such solution.

So, let (z,y,z) be a primitive solution with z,y,z > 0. First we claim
that ged(z, z) = 1. If not, then there is a prime p which divides both z and
z. But then p? divides 22 — 2% = 3y? which forces p | y, in which case (z,y, 2)
is not primitive. Since ged(z,z) = 1, by a HW#1 problem we must have
ged(z —x,z+x) =1 or 2.

Next we note that  must be odd. Indeed, if x is even, then y and z are
both odd (in which case z% + 3y?* =3 mod 4 while 22 =1 mod 4) or y and
z are both even (in which case (z,y, z) is not primitive).

Since z is odd, exactly one of y and z is odd, and we consider two cases
accordingly.

Case 1: z is even, y is odd. Rewrite our equation as

3y = (z — ) (2 + o). (% * x)

We know that ged(z — x, 2+ x) = 1 or 2; moreover z — z and z + x are both
odd, so we must have gcd(z — x, z + x) = 1. From (***) we get that exactly
one of the numbers z — x and z + z is divisible by 3.

(***) as y* = (2 +x), with
both factors on the right-hand side still integers. Since ged(z —x,z+x) = 1,

Subcase 1: 3 | (z—x). Then we can rewrite

=%, 2+ x) as well. Moreover, *3* and z + x are both

positive. A product of two coprime positive integers is a perfect square if

we clearly have gcd(

and only if each of them is a perfect square, so there exist u,v € N such that
5
y > 0). Solving

3u2—v?
2

(x,y, 2z) is not primitive. Also u and v must have the same parity for x to

=u? and z + 2 = v?, and (***) yields y* = u?v?, whence y = uv (since

Z2—x 3ul 402
2

=2 = w? and z + 2 = v* for © and z, we get z =
. Clearly, we must have ged(u,v) = 1 and 3 1 v, for otherwise

and z =

be an integer, and since v and v are coprime, they must both be odd. Thus

(x,y, z) is of the form described in (b).

Subcase 2: 3 | (z+ ). Then we can rewrite (***) as y* = (z — x)==,

with both factors on the right-hand side still integers. Arguing similarly to

v2=3u? __
2

subcase 1, we conclude that there exist u,v € N such that x =
——3“22’ 2y =wwand z = —3“2; v?

that u, v must satisfy the restrictions from (b).

, and then deduce (by the same argument)

Case 2: z is odd, y is even. In this case y, z — x and z + x all even, so we
can rewrite our equation as

3<g>2:z—x‘z+x

2 2 2
with all factors above being integers. This time gcd(z — z,z + x) = 2, so
ged(35E, 52) = 1. Again 3 divides exactly one of the numbers %% and 52,



so splitting into two subcases and arguing similarly to Case 1, we conclude
that (z,y, z) must be of the form described in (a).

4. (10 pts) Let A be the set of all completely multiplicative functions
from N to C, and let A be the set of all multiplicative functions f : N — C
with the property that f(n) = 0 whenever n is not square-free. Recall that
according to our definition, a multiplicative (or completely multiplicative)
function g must satisfy g(1) =1

(a) Let h € A, and let H = h™!, the Dirichlet inverse of h. Prove that
H(n) = h(n)u(n) for all n and deduce that H € A (here h(n)u(n) is
the regular multiplication).

(b) Now prove that for any f € A, its Dirichlet inverse lies in A.

(c) Recall that the set M of all multiplicative functions forms a group with
respect to the Dirichlet product. Note that parts (a) and (b) simply
say that A = A~ that is, A is precisely the set of inverses of elements
of A (and vice versa). Now let (A), be the set of elements of M
representable as fi % ... x fi with each f; € A and k£ > 1 (in group-
theoretic terminology, (A), is the semigroup generated by A). Prove
that the intersection (A), N A contains just 1 element, the function /.
Hint: What can you say about the values of elements of (A), and A
on prime powers?

Solution: (a) It is more convenient to switch how H is defined and what we
have to prove about it, that is, we will redefine H by the formula H(n) =
h(n)u(n) and show that, defined in this way, H is the Dirichlet inverse of h,
that is H x h = I. We have

(H * h)( Zh h(n/d) = Z,u h(n)z,u(d)

dln dln

where the second equality holds by complete multiplicativity of A.

Since by definition p is the Dirichlet inverse of the function u defined by
u(n) = 1foralln, we have >, u(d) =3 ,, p(d)u(n/d) = (p*xu)(n) = I(n).
Thus, (H % h)(1) = h(1)I(1) = 1 and (H * h)(n) = h(n)I(n) = 0 for n > 1,
so H xh =1, as desired.

The other assertions of (a) are now clear — H is multiplicative since
H = h™! and we proved in class that multiplicative functions form a group
(alternatively, it is clear that the pointwise product of two multiplicative
functions is multiplicative, and by definition H is the pointwise product of A
and p). Also, H(n) = 0 whenever n is not square-free since p has the same
property. Thus, by definition H € A.



(b) Since f is multiplicative, f~! is also multiplicative. It is easy to see
that a multiplicative function ¢ is completely multiplicative if and only if
g(p®) = g(p)® for every prime p and integer a > 1. Thus, we just need to
check that f~! has the latter property.

For a > 1 and a prime p we have (f~1* f)(p®) = I(p®) = 0; on the other
hand, by definition,

(e HED =D e ) =
SN f) + Q) = e ) + %),

where the second equality holds since f € A.

Therefore, f~1(p*) = —f1(p* 1) f(p). We also know that f~1(1) =1
(since f~1 is multiplicative). From these equalities by straightforward induc-
tion we get

(") = (=1)“f(p)* for all a > 1.
In particular, f~*(p®) = (= f(p))* = (" (p))?, as desired.

(c) Clearly, I € (A), N A. Conversely, take any f € (A), N A, that is, f
is completely multiplicative and f = f; ... fj for some fi,..., fr € A. By
straightforward induction on k& we get the following formula for the Dirichlet
product of £ functions:

f)=(frx..x fi)m) =D fild)... fild).

n=dj...dy

Now let n = p**! for some prime p. We get

FE = > A (™).

61+...+6k:k’+1

For each term in the above sum, at least one of the ¢;’s is > 2, and therefore
fi(p®) =0 (as f; € A). Thus, each term (and hence the entire sum) is equal
to 0.

Thus, f(p*™') = 0. Since f is completely multiplicative, f(p**!) =
f(p)**t so f(p) = 0 for each prime p. Therefore, again since f is completely
multiplicative, for any n > 1 we have f(n) = f(p{*...pi*) = f(p1)™ ... f(pr)™ =
0. Therefore, f = I.



