Solving polynomial congruences modulo prime powers

Let $f(x) \in \mathbb{Z}[x]$ and let p be a prime.

Definition. Let x_0 be a reduced solution to $f(x) \equiv 0 \mod p^e$ for some $e \in \mathbb{N}$. A lift of x_0 is a reduced solution y to the congruence $f(x) \equiv 0 \mod p^{e+1}$ satisfying $y \equiv x_0 \mod p^e$.

It is clear that any reduced solution to $f(x) \equiv 0 \mod p^{e+1}$ arises as a lift of unique reduced solution to $f(x) \equiv 0 \mod p^e$.

Definition. A solution x_0 to $f(x) \equiv 0 \mod p^e$ will be called

regular if $p \nmid f'(x_0)$ and

singular if $p \mid f'(x_0)$

The following is the main result describing the possible number and type of lifts.

Lifting Theorem: Let x_0 be a reduced solution to $f(x) \equiv 0 \mod p^e$

- (a) If x_0 is a regular solution, then x_0 has a unique lift.
- (b) If x_0 is a singular solution, then x_0 has either p lifts or no lifts.
- (c) Lifts of regular solutions are regular and lifts of singular solutions are singular.

Parts (a) and (c) imply the following:

Corollary: If for some $e \in \mathbb{N}$ the congruence $f(x) \equiv 0 \mod p^e$ has k reduced solutions and all these solutions are regular, then the congruence $f(x) \equiv 0 \mod p^f$ has k reduced solutions for any $f \geq e$.

Lifting solutions mod p to solutions mod p^2 .

Write our polynomial f(x) in the standard form $f(x) = a_n x^n + \ldots + a_1 x + a_0$ with $a_n \neq 0$, and assume that $p \nmid a_i$ for some *i*, and let $\phi(x) = [a_n]x^n + \ldots + [a_1]x + [a_0] \in \mathbb{Z}_p[x]$ (thus ϕ is obtained from *f* by replacing each coefficient by its congruence class mod *p*). As discussed in class, there is a natural bijection between reduced solutions to $f(x) \equiv 0 \mod p$ and roots of $\phi(x)$, namely if $x_0 \in \mathbb{Z}$ with $0 \leq x_0 \leq p - 1$, then

 x_0 is a solution to $f(x) \equiv 0 \mod p \iff [x_0]$ is a root of ϕ (***)

The assumption $p \nmid a_i$ for some *i* is equivalent to $\phi \neq 0$ (as a polynomial); since \mathbb{Z}_p is a field, it implies that ϕ has at most $n = \deg(f)$ roots.

Now note that for any $x_0 \in \mathbb{Z}$ we have

- (i) $p \mid f'(x_0) \iff \phi'([x_0]) = [0]$ and so
- (ii) $p \nmid f'(x_0) \iff \phi'([x_0]) \neq [0]$

Thus, we can extend the observation (***) as follows. Suppose $x_0 \in \mathbb{Z}$ and $0 \leq x_0 \leq p-1$. Then

- (i) x_0 is a singular solution to $f(x) \equiv 0 \mod p \iff [x_0]$ is a common root of ϕ and ϕ'
- (ii) x_0 is a regular solution to $f(x) \equiv 0 \mod p \iff [x_0]$ is a root of ϕ and not a root of ϕ' .

The point of this observation is that if we want to determine solutions mod p and their lifting types (singular or regular), all the relevant information can be expressed in terms of ϕ (which is a polynomial over a field and hence is easier to work with than f).