Homework #4. Solutions to selected problems.

For solutions to the remaining problems see Solutions to HW#5 and HW#6
on Spring 2014 webpage.

2. In this question we investigate the following question: given n € N,
how many solutions can the equation ¢(z) = n have?

(a) Read about Fermat primes in Chapter 2. Let F,, = 2" + 1 be the
n'™™ Fermat number. It is easy to verify directly that F), is prime for
0 < n < 4, and it is known that F,, is composite for 5 < n < 32.
Use these facts to compute the number of solutions to the equation
¢($) — 22016‘

Solution: Let x = Hlep;” be the prime factorization of . Then ¢(x) =
[T, p (ps — 1). Since ¢(x) = 22016, each prime p; is equal to 2 or has the
form 2™ + 1 for some m € N, and a; = 1 unless p; = 2

If m is divisible by an odd prime, then 2™ + 1 cannot be prime because
of the identity z° +1 = (2 4+ 1)(32_4 (—1)%z?) which holds for any odd s (if s
is an odd prime divisor of m, we can apply this formula to = 2™/%). Thus,
each p; is 2 or F,, = 22" 4+ 1 for some n € Z>q. Since F), is not prime for
5 < n < 32 and clearly F,, — 1 > 22016 for n, > 33, the only possibilities for p;
are 2, Fy =3, F) =5, F, = 17 and F3 = 257 and F; = 65537.

Hence x must be of the form x = 2¢ H?:o F where each a; = 0 or 1.
Then ¢(z) = 20~ Taot2artdaxt8as+16as oo (1) = 2016 <= a—1+ag+2a;+
4ay + 8az + 16a4 = 2016. Clearly for any choice of ag, a1, as, as,aq € {0,1}
this equation has unique solution for a, namely, a = 2017 — (ag + 2a1 + 4as +
8az + 16a4), and this solution is positive! Hence the number of solutions is
equal to 2° = 32.

3. Let R and S be commutative rings with 1, and let ¢ : R — S be a
surjective ring homomorphism satisfying ¢(1g) = 1s.

(a) Prove that ¢(R*) C S* and the restricted map ¢ : R* — S* is a group
homomorphism.

(b) Give an example showing that ¢(R*) may be strictly smaller than S*.



(c¢) Assume now that ¢ is a ring isomorphism. Prove that ¢(R*) = S* and
the restricted map ¢ : R* — S* is a group isomorphism. (This result
was stated as Lemma 7.1 in class)

Solution: (a) Take any r € R*. By definition there exists u € R such that
ru = lg. Since ¢(1g) = 1g, we have ¢(r)p(u) = ¢(ru) = ¢(1g) = 1g, so by
definition ¢(r) € S*. Therefore ¢p(R*) C S*. The fact that ¢ : R* — S* is
a group homomorphism is clear since ¢ : R — S respects multiplication (by
assumption). Note that surjectivity of ¢ is actually not needed for this part
(the point of mentioning surjectivity was to make part (b) interesting).

(b) Let R =7, S = Zs and define ¢ : R — S by ¢(x) = [z]5. Then ¢ is a
surjective homomorphism, but the restricted map ¢ : R* — S* is not surjec-
tive since ¢(R*) = ¢({1,—1}) = {[1]5, [4]5} while S* = {[1]s, [2]5, [3]5, [4]5}

(c) By (a) we have ¢(R*) C S*. Since ¢ is a ring isomorphism, the
inverse map ¢~ ' : S — R is well defined and also an isomorphism. Hence,
applying the result of (a) to ¢!, we get ¢~(S*) C R*, and now applying ¢
to both sides of the inclusion, we get S* C ¢(R*). Combining this with the
opposite inclusion ¢(R*) C S*, we conclude that ¢(R*) = S*.

4. Use the structure of the groups U, to find the number of reduced
solutions to the congruence z*> =1 mod n.

Solution: First note that any x € Z satisfying 2° = 1 mod n must be
coprime to n, so the number of reduced solutions to this congruence is equal
to the number of solutions to the equation g* = [1] in Z,,. As usual, it suffices
to consider the case when n is a prime power n = p“.

Suppose first that p is an odd prime. Then U, is cyclic, let g be a generator
of U,, and let m = o(g) = |Uy,| = ¢(n) = p*~(p —1).

Take any x € U, and write it as z = ¢ for some 0 <7 < m — 1 (this can
be done uniquely). Note that z° = [1] < ¢* =[1] < m | 3.

Case 1: 3 | m. Then m is coprime to 3, so by the Coprime Lemma
m | 3i <= m|i. Since 0 < i < m — 1, the only 7 that works is i = 0, so
the equation has one solution.

Case 2: 31m. Then % is an integer, and m | 3i <= 3i = mt for some
tel < i=%t for some t € Z. Since 0 < i < m — 1, we have exactly

three values of i that work, namely i = 0, @, 2m

;%> 3, SO the equation has three
solutions.

Since m = p*~!(p — 1), it is clear that 3 | m <= p=1 mod 3 or p=3
and a > 2. This finishes the analysis in the case when p is an odd prime.

If p = 2, we claim that the equation x® = [1] has exactly one solution.



Indeed, x = [1] is always a solution. Any other solution must be an element
of order 3 in U,,. But if n is a power of 2, |U,| is also a power of 2, so 3 1 |U,|,
and therefore |U,,| has no elements of order 3 by Lagrange theorem.

We can now state the final answer. Let s,, denote the number of reduced
solutions to #* = 1 mod n. We proved that if p is a prime, then sy =
3ifp=1mod3or (p=3and a > 2) and s, = 1 otherwise. Since
Spo_plk = Syt Sy (where py, ..., py are distinct primes), the final answer
is as follows:

Let t be the number of (distinct) prime factors of n of the form 3i 4 1.

Then s, = 3! if n is not divisible by 9 and s,, = 3'*! if n is divisible by 9.



