
Homework #4. Solutions to selected problems.

For solutions to the remaining problems see Solutions to HW#5 and HW#6

on Spring 2014 webpage.

2. In this question we investigate the following question: given n ∈ N,

how many solutions can the equation φ(x) = n have?

(a) Read about Fermat primes in Chapter 2. Let Fn = 22n + 1 be the

nth Fermat number. It is easy to verify directly that Fn is prime for

0 ≤ n ≤ 4, and it is known that Fn is composite for 5 ≤ n ≤ 32.

Use these facts to compute the number of solutions to the equation

φ(x) = 22016.

Solution: Let x =
∏k

i=1 p
ai
i be the prime factorization of x. Then φ(x) =∏k

i=1 p
ai−1
i (pi − 1). Since φ(x) = 22016, each prime pi is equal to 2 or has the

form 2m + 1 for some m ∈ N, and ai = 1 unless pi = 2

If m is divisible by an odd prime, then 2m + 1 cannot be prime because

of the identity xs + 1 = (x+ 1)(
∑s−1

i=0 (−1)ixi) which holds for any odd s (if s

is an odd prime divisor of m, we can apply this formula to x = 2m/s). Thus,

each pi is 2 or Fn = 22n + 1 for some n ∈ Z≥0. Since Fn is not prime for

5 ≤ n ≤ 32 and clearly Fn− 1 > 22016 for n ≥ 33, the only possibilities for pi
are 2, F0 = 3, F1 = 5, F2 = 17 and F3 = 257 and F4 = 65537.

Hence x must be of the form x = 2a
∏4

i=0 F
ai
i where each ai = 0 or 1.

Then φ(x) = 2a−1+a0+2a1+4a2+8a3+16a4 , so φ(x) = 2016 ⇐⇒ a−1+a0+2a1+

4a2 + 8a3 + 16a4 = 2016. Clearly for any choice of a0, a1, a2, a3, a4 ∈ {0, 1}
this equation has unique solution for a, namely, a = 2017− (a0 + 2a1 + 4a2 +

8a3 + 16a4), and this solution is positive! Hence the number of solutions is

equal to 25 = 32.

3. Let R and S be commutative rings with 1, and let φ : R → S be a

surjective ring homomorphism satisfying φ(1R) = 1S.

(a) Prove that φ(R×) ⊆ S× and the restricted map φ : R× → S× is a group

homomorphism.

(b) Give an example showing that φ(R×) may be strictly smaller than S×.
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(c) Assume now that φ is a ring isomorphism. Prove that φ(R×) = S× and

the restricted map φ : R× → S× is a group isomorphism. (This result

was stated as Lemma 7.1 in class)

Solution: (a) Take any r ∈ R×. By definition there exists u ∈ R such that

ru = 1R. Since φ(1R) = 1S, we have φ(r)φ(u) = φ(ru) = φ(1R) = 1S, so by

definition φ(r) ∈ S×. Therefore φ(R×) ⊆ S×. The fact that φ : R× → S× is

a group homomorphism is clear since φ : R → S respects multiplication (by

assumption). Note that surjectivity of φ is actually not needed for this part

(the point of mentioning surjectivity was to make part (b) interesting).

(b) Let R = Z, S = Z5 and define φ : R→ S by φ(x) = [x]5. Then φ is a

surjective homomorphism, but the restricted map φ : R× → S× is not surjec-

tive since φ(R×) = φ({1,−1}) = {[1]5, [4]5} while S× = {[1]5, [2]5, [3]5, [4]5}.
(c) By (a) we have φ(R×) ⊆ S×. Since φ is a ring isomorphism, the

inverse map φ−1 : S → R is well defined and also an isomorphism. Hence,

applying the result of (a) to φ−1, we get φ−1(S×) ⊆ R×, and now applying φ

to both sides of the inclusion, we get S× ⊆ φ(R×). Combining this with the

opposite inclusion φ(R×) ⊆ S×, we conclude that φ(R×) = S×.

4. Use the structure of the groups Un to find the number of reduced

solutions to the congruence x3 ≡ 1 mod n.

Solution: First note that any x ∈ Z satisfying x3 ≡ 1 mod n must be

coprime to n, so the number of reduced solutions to this congruence is equal

to the number of solutions to the equation g3 = [1] in Zn. As usual, it suffices

to consider the case when n is a prime power n = pa.

Suppose first that p is an odd prime. Then Un is cyclic, let g be a generator

of Un, and let m = o(g) = |Un| = φ(n) = pa−1(p− 1).

Take any x ∈ Un and write it as x = gi for some 0 ≤ i ≤ m− 1 (this can

be done uniquely). Note that x3 = [1] ⇐⇒ g3i = [1] ⇐⇒ m | 3i.
Case 1: 3 | m. Then m is coprime to 3, so by the Coprime Lemma

m | 3i ⇐⇒ m | i. Since 0 ≤ i ≤ m − 1, the only i that works is i = 0, so

the equation has one solution.

Case 2: 3 - m. Then m
3

is an integer, and m | 3i ⇐⇒ 3i = mt for some

t ∈ Z ⇐⇒ i = m
3
t for some t ∈ Z. Since 0 ≤ i ≤ m − 1, we have exactly

three values of i that work, namely i = 0, m
3
, 2m

3
, so the equation has three

solutions.

Since m = pa−1(p− 1), it is clear that 3 | m ⇐⇒ p ≡ 1 mod 3 or p = 3

and a ≥ 2. This finishes the analysis in the case when p is an odd prime.

If p = 2, we claim that the equation x3 = [1] has exactly one solution.
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Indeed, x = [1] is always a solution. Any other solution must be an element

of order 3 in Un. But if n is a power of 2, |Un| is also a power of 2, so 3 - |Un|,
and therefore |Un| has no elements of order 3 by Lagrange theorem.

We can now state the final answer. Let sn denote the number of reduced

solutions to x3 ≡ 1 mod n. We proved that if p is a prime, then spa =

3 if p ≡ 1 mod 3 or (p = 3 and a ≥ 2) and spa = 1 otherwise. Since

spa11 ...p
ak
k

= spa11 . . . spakk
(where p1, . . . , pk are distinct primes), the final answer

is as follows:

Let t be the number of (distinct) prime factors of n of the form 3i + 1.

Then sn = 3t if n is not divisible by 9 and sn = 3t+1 if n is divisible by 9.
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