Homework #3, to be completed by Thursday, Sep 15. Reading:

- 1. For this homework assignment: Sections 4.3 and 5.1
- 2. For the next week's classes (Sep 13,15): 5.2, 6.1 and 6.2.

Problems:

- 1. Find all reduced solutions to the congruence $x^2 + x + 3 \equiv 0 \mod 45$.
- 2. Let p be a prime and $e \geq 1$ an integer.
	- (a) Prove that the congruence

$$
x^p - x \equiv p \mod p^e
$$

has precisely p reduced solutions.

(b) Find all solutions to the congruence in (a) for $p = 3$ and $e = 2$.

3. Let $f(x) \in \mathbb{Z}[x]$ be a polynomial of degree 3. Prove that the congruence $f(x) \equiv 0 \mod 25$ cannot have precisely 8 reduced solutions. Warning: it may have more than 8.

4. Let R be a commutative ring with 1. Prove that R^{\times} , the set of units of R, is a group with respect to multiplication.

5. The goal of this problem is to give a group-theoretic proof of Wilson's theorem: $(p-1)! \equiv -1 \mod p$ for every prime p.

- (a) Let $G = \mathbb{Z}_p^{\times}$. Prove that the only elements of G equal to their inverses are $[1]$ and $-[1]$.
- (b) Now use (a) to prove that $(p-1)! \equiv -1 \mod p$. **Hint:** Reformulate the desired congruence as equality in \mathbb{Z}_p and note that $[(p-1)!]$ is the product of all elements of G.

6. Let G be a finite group. The exponent of G, denoted by $exp(G)$, is the smallest positive integer m such that $g^m = e$ for all $g \in G$. Note that $g^{|G|} = e$ for all $g \in G$ by (a corollary of) Lagrange theorem, so we always have $\exp(G) \leq |G|$.

- (a) Prove that $exp(G)$ is equal to the least common multiple of orders of elements of G. Hint: Use Problem 5 from $HW#1$.
- (b) Let S be the set of possible orders of elements of G . Prove that if $n \in S$, then every positive divisor of n also lies in S.

In the remaining parts of this problem we assume that the group G is abelian.

- (c) Let $g, h \in G$, let $k = o(g)$, $l = o(h)$ (where $o(x)$ is the order of x). Let $m = lcm(k, l)$. Prove that $(gh)^m = e$. If in addition $gcd(k, l) = 1$, prove that $o(qh) = m = kl$.
- (d) Prove that for any $g, h \in G$ there exists an element $f \in G$ with $o(f) =$ $lcm(o(g), o(h))$. **Hint:** Let p_1, \ldots, p_k be the set of primes which divide $o(g)$ or $o(h)$, so we can write $o(g) = p_1^{a_1} \dots p_k^{a_k}$ and $o(g) = p_1^{b_1} \dots p_k^{b_k}$. By (b), there exist elements $g_1, \ldots, g_k, h_1, \ldots, h_k$ with $o(g_i) = p_i^{a_i}$ and $o(h_i) = p_i^{b_i}$ for $1 \le i \le k$. Now use this fact, part (c) (several times) and Problem 2 from HW#3 (Spring 2014) to construct the desired element f.
- (e) Let $g \in G$ be an element of maximal order (among all elements of G). Prove that $o(h) | o(g)$ for all $h \in G$ and deduce that $o(g) = exp(G)$. **Hint:** use (d) .