
Math 5651. Fall 2011. Solutions to the in-class part of the second midterm.

1. Let V be a finite-dimensional vector space and n = dim(V ). Let S, T ∈
L(V ) be s.t.

ST = 0

Prove that
rk(S) + rk(T ) ≤ n

referring only to results proved in class.

Solution: Since ST = 0, we have S(T (v)) = 0 for all v ∈ V , and thus,
Im (T ) = {T (v) : v ∈ V } ⊆ Ker (S). Therefore, rk(T ) = dim(Im (T )) ≤
dim(Ker (S)) = null(S), and using the rank-nullity theorem we get

rk(S) + rk(T ) ≤ rk(S) + null(S) = dim(V ) = n.

2. Let A be a 3× 3 matrix over R. Eight of the nine entries of A are given
below:

A =

1 3 4
2 6 ?
3 9 −3


Let α 6= 0 be a fixed real number, and suppose that one of the eigenvalues of
A is equal to α.

(a) Find all the other eigenvalues of A. Hint: This can be done almost
without computations.

(b) List all values of α for which A is not diagonalizable. Make sure to
prove that for each α you listed A is not diagonalizable and for each α
you did not list A is diagonalizable.

Solution: (a) First note that the first two columns of A are proportional,
so det(A) = 0. Therefore, 0 is an eigenvalue of A (e.g. since det(A) =
det(A − 0 · I) = χA(0)). We also know that the sum of all eigenvalues of A
is equal to tr(A) = 1 + 6 − 3 = 4. Thus, the eigenvalues of A are α, 0 and
4− α− 0 = 4− α.

(b) If A has 3 distinct eigenvalues, it is diagonalizable by Corollary 16.5.
Therefore, A may fail to be diagonalizable only if the numbers 0, α and 4−α
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are not distinct, which happens if 0 = 4 − α (in which case α = 4) or if
α = 4− α (in which case α = 2).

If α = 4, we have m4(A) = 1 and m0(A) = 2, so A is diagonalizable
⇐⇒ dimE0(A) = null(A) = 2 which is equivalent to saying that rk(A) =
3 − null(A) = 1. But clearly rk(A) ≥ 2 since the first and third rows of A
are not proportional. Therefore, A is not diagonalizable if α = 0.

Similarly, if α = 2, we have m2(A) = 2 but rk(A− 2I) ≥ 2 (for the same
reason), so A is not diagonalizable if α = 2 as well.
Final answer for (b): α = 2, 4.

3. Let A be an n× n matrix over a field F . For each 1 ≤ k, l ≤ n by a k× l
submatrix of A we mean the object obtained from A by removing n − k
rows and n− l columns (there are no restrictions on which rows and columns
are being removed).

(a) Suppose that A has a k× k submatrix B with det(B) 6= 0. Prove that
rk(A) ≥ k.

(b) Conversely, suppose that rk(A) ≥ k. Prove that there exists a k × k
submatrix B with det(B) 6= 0. Hint: What can you say about possible
ranks of n× k submatrices of A?

Solution: (a) WOLOG, the matrix B lies at the intersection of the first k
rows and the first k columns of A. Since det(B) 6= 0, the columns of B are
linearly independent. This implies that the first k columns of A are linearly
independent. Indeed, suppose that there exist λ1, . . . , λk ∈ F , not all 0 s.t.
λ1col1(A) + . . .+ λkcolk(A) = 0. This means that λ1ai1 + . . .+ λkaik = 0 for
all 1 ≤ i ≤ m. Forgetting about i ≥ k + 1 and using these equalities just for
1 ≤ i ≤ k, we conclude that λ1col1(B) + . . .+λkcolk(B) = 0, contrary to our
assumption.

Thus, A has k linearly independent columns, so rk(A) ≥ k.

(b) Since rk(A) ≥ k, A has k linearly independent columns. Consider the
m × k matrix C composed of those k columns. Then C also has k linearly
independent columns, so rk(C) = k (it cannot be larger than k since C
has the total of k columns). Since the rank of a matrix is also equal to
the largest number of linearly independent rows, we conclude that C has k
linearly independent rows. Let B be the matrix composed of those k rows
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of C. By construction, B is a k × k submatrix of A and B has k linearly
independent rows, so rk(B) = k and hence det(B) 6= 0.

4. Let V be a six-dimensional vector space over a field F . Let T ∈ L(V )
and assume that χT (x) = (x− λ)4(x− µ)2 for some λ 6= µ.

(a) List all possibilities for JCF (T ) (up to permutation of blocks). An
answer is sufficient. To save time instead of writing down matrices just
write which Jordan blocks they are composed of, denoting by J(α, k)
the Jordan block of size k corresponding to α.

(b) Now assume in addition that dimEλ(T ) = 2 and dimEµ(T ) = 1. List
all possibilities for JCF (T ). For each JCF that you listed in (a) but
not in (b) explain why it cannot occur in (b).

(c) Keeping all the previous assumptions, suppose in addition that V CAN-
NOT be written as V = U ⊕W where U and W are both T -invariant
and dim(U) = dim(W ) = 3. Find JCF (T ) (it is uniquely determined
by the given information).

Solution: (a) There are 2 ways to write 2 as sum of positive integers (where
the order does not matter): 2 = 2 and 2 = 1 + 1 and 5 ways to write 4 in
such a way: 4 = 4, 4 = 3 + 1, 4 = 2 + 2, 4 = 2 + 1 + 1, 4 = 1 + 1 + 1 + 1.
Therefore, there are 10 = 5 · 2 possibilities for JCF (T );

(i) JCF (T ) = J(λ, 4)⊕ J(µ, 2)

(ii) JCF (T ) = J(λ, 3)⊕ J(λ, 1)⊕ J(µ, 2)

(iii) JCF (T ) = 2J(λ, 2)⊕ J(µ, 2)

(iv) JCF (T ) = J(λ, 2)⊕ 2J(λ, 1)⊕ J(µ, 2)

(v) JCF (T ) = 4J(λ, 1)⊕ J(µ, 2)

(vi) JCF (T ) = J(λ, 4)⊕ 2J(µ, 1)

(vii) JCF (T ) = J(λ, 3)⊕ J(λ, 1)⊕ 2J(µ, 1)

(viii) JCF (T ) = 2J(λ, 2)⊕ 2J(µ, 1)

(ix) JCF (T ) = J(λ, 2)⊕ 2J(λ, 1)⊕ 2J(µ, 1)
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(x) JCF (T ) = 4J(λ, 4)⊕ 2J(µ, 1)

(b) We start with a general claim:

Claim: For each α ∈ Spec(T ), the dimension of the eigenspace Eα(T ) is
equal to the number of Jordan blocks corresponding to α.

Proof: This claim follows from our proof of existence of JCF, but can be also
seen directly as follows. We have dimEα(T ) = null(T − αI) = 6 − rk(T −
αI) = 6 − rk(A − αI6) where A = JCF (T ). If cα is the number of blocks
in A corresponding to α, then the matrix A − αI6 has cα columns which
are identically zero (the first column of each Jordan block). The remaining
columns are nonzero and moreover have different degrees, if we define the
degree of a column to be the largest i s.t. the column has nonzero entry
in the ith row. The latter property easily implies that the 6 − cα nonzero
columns of A − αI6 are linearly independent. So, rk(A − αI6) = 6 − cα,
whence dimEα(T ) = 6− (6− cα) = cα, as claimed above. �

According to the claim, conditions dimEλ(T ) = 2 and dimEµ(T ) = 1 hold
⇐⇒ JCF (T ) has two blocks corresponding to λ and one block corresponding
to µ. Therefore, of the 10 possibilities from (a) precisely two, namely (ii) and
(iii), may occur in (b).

(c) If JCF (T ) = J(λ, 3) ⊕ J(λ, 1) ⊕ J(µ, 2) (option (ii)) and β is a corre-
sponding Jordan basis, we can write V = U ⊕W where U is the span of the
first three vectors of β (corresponding to the block J(λ, 3)) and W is the span
of the last three vectors of β (corresponding to the other two blocks). Then
dim(U) = dim(W ) = 3 and both U and W are T -invariant. Thus, option (ii)
cannot occur, and the only possibility is (iii): JCF (T ) = 2J(λ, 2)⊕ J(µ, 2).

Note: It takes a little work to show that option (iii) does satisfy the require-
ment in (c), but this was not a part of the problem.
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