Advanced Linear Algebra, Fall 2011.
Solutions to the take-home part of Midterm #2.

1. Let F be a field, A € Mat,,x,(F) for some m and n, and let k = rk(A).
(a) Prove that if A = A;+...+ A; where rk(A;) = 1 for each i, then | > k.

(b) Prove that there exist matrices Ay, ..., Ay, with rk(A4;) = 1 for each 1,
such that A= A; + ...+ A;.

Solution: (a) By HW# 6.1, rk(X +Y) < rk(X) + rk(Y) for any X,Y €
Mat,wn(F), and straightforward induction implies that rk(X; +...+ X,) <
22:1 rk(X;) for any . Hence

l
k=rk(A) =rk(A + ...+ A) <> rk(4;) =1.
i=1

(b) Since rk(A) = k, there exists k integers 1 < j; < ... < jr < n s.t.
colj, (A),...,colj (A) are linearly independent (in particular, they are all
nonzero), and every column of A is a linear combination of col;, (A), ..., col;, (A).
Thus, if J = {Jj1,...,Jjr}, then forany s € {1,... ,n}\J there exist \s, ..., Ak
s.t. coly(A) = 28 Agcol; (A).

Define the matrices Ay, ..., A by specifying each column as follows:
col;,(A) if s = j;
cols(A;)) =< 0 if s € J, but s # j;

)\siCOZji (A) if s € J.
Then by construction A = A; + ...+ A,. We claim that each A; has rank 1.

Indeed, A; # 0 since col;,(A;) = col;,(A) # 0, so rk(A;) > 1. On the other
hand, every column of A; is a multiple of col;,(A), so rk(A;) < 1.

2. Let V be a finite-dimensional vector space over a field F' and let T € L(V)
be such that yr(x) splits. Let n = dim(V).

(a) Suppose that T" has n distinct eigenvalues. Prove that V' has precisely 2"
T-invariant subspaces.

Solution: Let \q,...,\, be the eigenvalues of A. By Corollary 16.5, T is
diagonalizable, and moreover dimFE),(7") = 1 for all ¢ (if dimF),,(T") > 1 for
some 7, then > dimFE),(T) would exceed n = dim(V)).

1



Since T is diagonalizable, by HW 8.6(e), a subspace W of V' is T-invariant
< W =@ (E\(T)NW). Since each E),(T) is one-dimensional, there are
only two possibilities for E, (T)NW: either E),(T)NW =W or E,,(T)NW =
{0}. Thus there are (at most) 2" possibilities for &', (E),(T) NW), so there
are at most 2" T-invariant subspaces.

Let us now show that there are at least 2" T-invariant subspaces. For every
subset J of {1,...,n} let W; = @©;c;E5,(T). Then W; is T-invariant, and
moreover, W; # W for J # J'. Since {1,...,n} has 2" subsets (if one wants
to construct a subset of {1,...,n}, for each integer 1 < i < n there are two
choices: either to include ¢ in the subset or not, and choices for different ¢
are independent of each other). Thus, we exhibited 2" T-invariant subspaces
in V.

(b) Suppose that there exists an ordered basis 5 = {vy,...,v,} of V s.t. [T
is a Jordan block of size n corresponding to A = 0 (equivalently (vy, ..., v,) is
a nilpotent T-cycle). Prove that V has precisely n+ 1 T-invariant subspaces.

Solution: For each 1 < k < n let V} = Span(vy,...,v;), and put V5 = {0}.

By definition of 7" we have T'(v;) = 0 and T'(v;) = v;_1 for i < 1. This implies
that T'(v;) € Vi for 1 < i < k, and by linearity T'(Span(vy,...,vx)) C Vi,
so each Vj is T-invariant. Thus, we constructed n 4 1 T-invariant subspaces
{0} =Vu,W1,...,V,, =V, and we need to show that there are no others.

Let W be any T-invariant subspace, and let k£ be the smallest integer s.t.
W C Vi (such k exists since W is surely contained in V,, = V). We will
show that W = V,. By definition of k there exists v € W \ Vj_;, which
means that v = Zle \iv; with A, # 0. Note that TF"1(v) = A1 # 0, but
T*(v) = 0, so (T*1(v), T*2(v),...,v) is a nilpotent T-cycle with nonzero
initial vector. Thus, by Lemma 18.2, the vectors T*1(v), T*=2(v), ..., v are
linearly independent. Since W is T-invariant and contains v, it contains all
the vectors T%1(v), T*"%(v), ..., v, and so dim(W) > k. On the other hand,
W C Vi and dim(V}) = k. This is only possible if W = V.

(c) Give an example (with proof) where V has infinitely many 7-invariant
subspaces and T is not scalar, that is, T' # Al for any A € F.

Solution: Let F' be any infinite field. Choose two distinct elements A\, u €
F,let A = diag(\, A\, ) be the diagonal matrix with diagonal entries A, A, p
and T = L, : F® — F? be the left multiplication by A. Then T is not scalar,
but T'(v) = Av for all v € Span(ey, e3).

For each o € F', the subspace W, = Span(e;+aes) is a T-invariant subspace
of V, and W, # Wpg for o # [3 since e; +aes and e; + ey are not proportional
for v # . Since F is infinite, we have constructed infinitely many 7T-invariant
subspaces of V.



(d) Give an example where n = 3 and V' has precisely six T-invariant sub-
spaces.

Solution: First we explain a natural way to construct such an example.
Again recall that by HW+#8.6(e), if T € (V') is diagonalizable, then a sub-
space W of V' is T-invariant <= W = @xcgpecr)(W N EX(W)). If T is not
diagonalizable, the above assertion may not be true (e.g., as part (b) shows),
but the following generalization does hold:

Theorem A: Let V' be a finite-dimensional vector space and T € L(V'). For
each A € Spec(T) let K\(T) be the corresponding generalized eigenspace of
T. Then a subspace W of V' is T-invariant <= W = @xespec(r)W where
Wy is a T-invariant subspace of Kx(T') for each X.

We shall not prove Theorem A in general, but we will establish it in a
special case, which is sufficient to solve (e). Anyway, Theorem A suggests a
natural way to construct the desired example: since 6 = 2 - 3, it suffices to
find V' of dimension 3 and T' € L(V') with exactly two eigenvalues A and p
s.t. there are three T-invariant subspace inside K,(T") and two T-invariant
subspace inside K, (7). An example with these properties is easy to produce.

Let F' be any field and fix a nonzero element A € F. Let T : F3 — F3 be
the unique linear map s.t. T'(e;) = 0, T'(e2) = e; and T'(e3) = Aes. Then
Spec(T) = {0, A}, Ko(T) = Span(ey,e2) and K,(T') = Span(ez). Note that
0
0 0
there are three T-invariant subspaces inside Ky(T') (namely, {0}, Span(e;)

T restricted to Span(ey,es) acts as Ly where A = 1), so by part (b)

and Span(e, es)). The restriction of 7" to Span(es) is simply multiplication
by A, so by part (a) there are two T-invariant subspaces inside Ky(7T') (namely,
{0} and Span(esz)). According to Theorem A, there are precisely six T-
invariant subspaces in F'3, namely

{0} Span(es)
Span(ey) Span(ey) + Span(es) = Span(ey, e3)
Span(ey, e3) Span(er, e2) + Span(es) =V

(e) It remains to prove (without referring to Theorem A) that in our example
from (d) there are no T-invariant subspaces besides those listed above. (This
is equivalent to proving Theorem A for the specific T' from part (d)).

Let T be as in part (d), and let W C F? be a T-invariant subspace. Take
any w = aje; + ases + azes € W. Then W also contains T?(w) = Mases,
hence also contains %Tz(w) = azez and w — ases = aje; + asey. Thus,
w = wy + wy where wy = aje; + ages € W N Ko(T) and wy = azez € K\(T),
soW C (WNKy(T))®(WNK(T)). The opposite inclusion (W N Ky(T)) @
(W N K\(T)) CW is obvious, so W = (W N Ko(T)) ® (W N K\T)).
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Finally note that W N Ky(7') is T-invariant (being an intersection of 7-
invariant subspaces) and contained in Ky(T'), so W N Ky(T) must equal
{0}, Span(e1) or Span(eyi,ez) by part (b), and W N K,(T') must equal to
{0} or Span(es) = K,(T) by part (a) (or simply because K,(7') is one-
dimensional). Thus, there are at 6 = 2 -3 T-invariant subspaces.

3. Let F be a field, A € Mat,,(F), and assume that xa(x) splits. Let
A1, ..., A¢ be the distinct eigenvalues of A, and m,; the multiplicity of \;.

(a) Prove that tr(A*) = m\¥ + ...+ myA\F for each k € Z,.

Solution: We start with a basic result about multiplying upper-triangular
matrices which can be checked by direct computation. Below for a matrix X
by X;; we denote the (i, j)-entry of X.

Lemma: Let A, B € Mat,«,(F) be upper-triangular matrices. Then AB is
also upper-triangular and (AB); = Ay By for all 1 <i < mn.

Using this lemma, by straightforward induction we obtain the following:
Corollary: Let A € Mat,x,(F) be upper-triangular. Then for any k € N
the matriz A* is upper-triangular and (A*); = (Ay)* for all 1 <i <n.

We now use this corollary to solve part (a).

Case 1: A is in JCF. Then A is upper-triangular, with diagonal entires
A\, appearing m; times, ..., ), appearing m, times. By Corollary, A* is
also upper-triangular, with diagonal entires A} appearing m; times, ..., AF
appearing m; times. Hence tr(A*) = 37 m; A,

General Case: Since xa(z) splits, there exist a matrix J in JCF and an
invertible matrix @ s.t. A = QJQ~'. We know that xa(z) = xs(x), so A
and J have the same eigenvalues with the same multiplicities. So by Case 1,

t
tr(J*) = Zmi)\f. (% % %)
i=1

Also note that A* = (QJQ™1)* = QJ*Q~'. Hence by HW#7.5(b) and (***)
we have tr(A*) = tr(J¥) = 320 mAk.

(b) Assume that F' = R (real numbers) and tr(A*) = 0 for all k € Z~(. Prove
that t = 1 and A; = 0 (that is, A has just one eigenvalue and that eigenvalue
is 0). Deduce that A is nilpotent.

Solution: We are given that tr(A4) = 0,tr(A?) = 0,...,tr(A") = 0, so by
part (a) for each 1 < 7 <t we have 22:1 mz)\; = 0. This system of ¢ scalar
equations is equivalent to one matrix equation A-v = 0 where A € Mat;«;(R)

miA;
is given by A;; = )\;- and v = : . Then A is a Vandermonde matrix,
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and since A1,...,\; are distinct, A is invertible. Thus, we conclude that
v =0, so my\; = 0 for each i. By assumption, each m; > 0, so we must have
A; = 0 for each 7. Since \q,...,\; are distinct, this is only possible if t = 1
and A\; = 0.

Now we prove that A is nilpotent. Let J = JCF(A), so that A = QJQ ™!
for some Q. Since A* = QJ*Q~! for every k, it suffices to show that J is
nilpotent.

Since 0 is the only eigenvalue of A, the matrix J is a direct sum of several
Jordan blocks with 0 on the diagonal: J = @®;_,J(0,n;) where > n;, = n.
We verified earlier that J(0, k)¥ = 0 for every & € N. Since n > n; for each
7, using the formula for multiplying block-diagonal matrices, we get

J" =@, J(0,m:)" = iy J(0,n5)" - J(0,m,)" " = 0.

(c) Does the assertion of (b) remain true if R is replaced by an arbitrary field
F? Prove or give a counterexample.

Solution: The proof from part (b) remains valid over any field F' of charac-
teristic zero, that is, any field F' s.t. 1 +...+ 1 % 0 in F for every positive
—_——

n times
integer n. The latter condition is indeed used in the proof of (b) (although it

was not explicitly mentioned): when we use the equation m;\; = 0 to derive
that \; = 0, we treat m; not as an integer, but as an element of F' represented
by that integer (that is, 1p added to itself m; times), so we can only derive
that A\; = 0 if m; represents a nonzero element of F'. This tells us that we
need to consider fields of positive characteristic to find a counterexample.

It is easy to see that any field of positive characteristic can be used as a
counterexample, but for simplicity we use the familiar fields Z, (where p is
any fixed prime). Let A = I, € Mat,«,(Z,), the p x p identity matrix over
Z,. Then A* = I, for all k € N, so A is not nilpotent, but tr(4*) =px1=0
for all k£ € N.

Remark: As many of you pointed out, part (b) (as stated) admitted a very
simple solution — it is enough to consider the equation tr(A%) = 0 and use
the fact that squares of nonzero real numbers are positive. This argument,
however, does not work over C (complex numbers), while the proof presented
above carries over without any changes (as explained at the beginning of the
solution for (c)).



