
Advanced Linear Algebra, Fall 2011. Solutions to midterm #1.

1. Let V = P2(R), the vector space of polynomials of degree ≤ 2 over R.

Let T : V → V be the differentiation map, that is, T (f(x)) = f ′(x).

(a) Find the matrix [T ]β with respect to the ordered basis β = {x2, 2x, x2+

2x+2} of V . (You need not prove that T is linear or that β is a basis).

(b) Prove that there is NO ordered basis γ of V s.t.

[T ]γ =

1 1 2
0 2 4
0 3 6

 .

Solution: (a) We have

T (x2) = 2x = 0 · x2 + 1 · 2x+ 0 · (x2 + 2x+ 2),

T (2x) = 2 = (−1) · x2 + (−1) · 2x+ 1 · (x2 + 2x+ 2),

T (x2 + 2x+ 2) = 2x+ 2 = (−1) · x2 + 0 · 2x+ 1 · (x2 + 2x+ 2).

Therefore,

[T ]γ =

0 −1 −1
1 −1 0
0 1 1

 .

(b) Suppose there exists a basis γ = {f(x), g(x), h(x)} s.t.

[T ]γ =

1 1 2
0 2 4
0 3 6

 .

Then T (f(x)) = 1 · f(x) + 0 · g(x) + 0 · h(x) = f(x), so f ′(x) = f(x). If

f(x) = ax2 + bx+ c, then f ′(x) = 2ax+ b, so deg(f ′(x)) < deg(f(x)) unless

f(x) = 0. Thus we conclude that f(x) = 0, which is impossible since 0 cannot

be contained in any linearly independent set (in particular, any basis).

2. Let f : A → B be a function from a set A to a set B. As usual, for a

subset C of A, we let f(C) = {f(c) : c ∈ C} be the image of C inder f . If
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D is a subset of B, the preimage of D under f is the subset f−1(D) ⊆ A

defined by

f−1(D) = {a ∈ A : f(a) ∈ D}.

Note that f−1 here is NOT the inverse function (which may not exist) –

f−1(D) should be treated as a single expression.

Now let V and W be vector spaces over the same field, let T : V → W a

linear map, and let U be a subspace of W .

(a) Prove that T−1(U) is a subspace of V .

(b) Prove that T (T−1(U)) ⊆ U . Hint: not much to do here.

(c) Give an example showing that T (T−1(U)) may not equal U .

(d) Now assume that V andW are finite-dimensional. Prove that dim(T−1(U)) ≤
dim(U) + dim(Ker(T )).

Solution: (a) As usual, we check three conditions:

Since T (0) = 0 ∈ U , we have 0 ∈ T−1(U), so T−1(U) contains 0.

If v, w ∈ T−1(U), then T (v), T (w) ∈ U , and since U is a subspace,

T (v) + T (w) ∈ U . But T (v) + T (w) = T (v+w), so T (v+w) ∈ U , and

thus v + w ∈ T−1(U). Hence T−1(U) is closed under addition.

Finally, if v ∈ T−1(U) and λ ∈ F , then T (v) ∈ U , so T (λv) = λT (v) ∈
U (as U is a subspace). Hence λv ∈ T−1(U), so U is closed under scalar

multiplication.

(b) We have T (T−1(U)) = {T (v) : v ∈ T−1(U)} = {T (v) : T (v) ∈ U} ⊆ U .

(c) Let U = W and T : V → W any non-surjective linear map. Then

T (T−1(U)) ⊆ T (V ) 6= U . For instance, we can let F to be any field, U =

V = W = F and let T : V → W be the trivial map, that is, T (v) = 0 for all

v ∈ V .

(d) Consider the map T ′ : T−1(U) → U given by T ′(v) = T (v). Note that

Ker(T ′) = Ker(T ). Indeed, since T ′ is obtained from T by restricting the

domain to T−1(U), we have Ker(T ′) = Ker(T ) ∩ T−1(U). Since T−1(U) ⊇
T−1({0}) = Ker(T ), so Ker(T ) ∩ T−1(U) = Ker(T ).

Applying the rank-nullity theorem to T ′, we get

dim(T−1(U)) = dim(Ker(T ′)) + dim(Im(T ′)) ≤ dim(Ker(T )) + dim(U)

since Ker(T ′) = Ker(T ) and Im(T ′) ⊆ U by construction.

3. Let V = P4(R).
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(a) Prove that the set {x4, x4 + x3, x4 + x2, x4 + x, x4 + 1} is a basis of V .

(b) Prove that the set

{(x−1)(x−2)(x−3)(x−4), (x−1)(x−2)(x−3)(x−5), (x−1)(x−2)(x−4)(x−5),

(x− 1)(x− 3)(x− 4)(x− 5), (x− 2)(x− 3)(x− 4)(x− 5)}

is a basis of V .

Solution: (a) Since the given set contains 5 elements and 5 = dim(V ), it is

enough to prove that the elements are linearly independent.

So suppose that ax4 +b(x4 +x3)+c(x4 +x2)+d(x4 +x)+e(x4 +1) = 0 for

some a, b, c, d, e ∈ R. Putting the left-hand side into standard form, we get

(a+ b+ c+ d+ e)x4 + bx3 + cx2 + dx+ e = 0. By definition two polynomials

are equal ⇐⇒ they have the same coefficient of xn for each n. Thus, we

conclude that a + b + c + d + e = 0 and b = c = d = e = 0. Substituting

b = c = d = e = 0 in the first equality, we get that a = 0 as well. Therefore,

the set {x4, x4 + x3, x4 + x2, x4 + x, x4 + 1} is linearly independent.

(b) Denote the given polynomials by p1(x), p2(x), p3(x), p4(x), p5(x) in the

order they are given in the problem. As in (a), it suffices to check linear

independence of p1, . . . , p5. So, suppose that for some α1, . . . , α5 ∈ R we

have
5∑
i=1

αipi(x) = 0 (∗ ∗ ∗)

The fact that (***) holds as equality of polynomials implies that it also

holds as equality of functions, that is, plugging in any real number for x in

(***) should give us a valid a numerical equality. Note that p2(5) = p3(5) =

p4(5) = p5(5) = 0 while p1(5) = (−1)(−2)(−3)(−4) = 24 6= 0. Thus, setting

x = 5 in (***), we get 24α1 = 0, so α1 = 0

Similarly, setting x = 4, x = 3, x = 2 and x = 1, we obtain that α2 = 0,

α3 = 0, α4 = 0 and α5 = 0, respectively. Thus each αi = 0, so {p1, . . . , p5}
are linearly independent.

4. Let V be a finite-dimensional vector space and U1, U2, U3 subspaces of V .

(a) Prove that (U1 ∩ U3) + (U2 ∩ U3) ⊆ (U1 + U2) ∩ U3

(b) Prove that dim(U1+U2+U3) ≤ dim(U1)+dim(U2)+dim(U3)−dim(U1∩
U2)− dim(U1 ∩ U3)− dim(U2 ∩ U3) + dim(U1 ∩ U2 ∩ U3).

(c) Give an example showing that the inequality in (b) may be strict.
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Solution: (a) By definition, any element of (U1 ∩ U3) + (U2 ∩ U3) is of the

form x + y with x ∈ U1 ∩ U3 and y ∈ U2 ∩ U3. Then x + y ∈ U1 + U2 (since

x ∈ U1 and y ∈ U2) and x + y ∈ U3 (since x, y ∈ U3 and U3 is a subspace),

so x+ y ∈ (U1 + U2) ∩ U3.

(b) First note that U1 + U2 + U3 = (U1 + U2) + U3. Applying the formula

dim(X + Y ) = dim(X) + dim(Y )− dim(X ∩ Y ),

first with X = U1 + U2 and Y = U3 and then with X = U1 and Y = U2, we

get

dim(U1 + U2 + U3) = dim(U1 + U2) + dim(U3)− dim((U1 + U2) ∩ U3) =

dim(U1) + dim(U2)− dim(U1 ∩ U2) + dim(U3)− dim((U1 + U2) ∩ U3)

Since (U1∩U3)+(U2∩U3) ⊆ (U1+U2)∩U3, we have dim((U1∩U3)+(U2∩U3)) ≤
dim((U1 +U2)∩U3), so −dim((U1 +U2)∩U3) ≤ −dim((U1∩U3)+(U2∩U3)).

Combining this with the above formula for dim(U1 + U2 + U3), we get the

desired inequality.

(c) The proof of (b) shows that the inequality in (b) will be strict whenever

(U1 ∩ U3) + (U2 ∩ U3) 6= (U1 + U2) ∩ U3.

As a simple example where the latter occurs, we can take V = F 2 (where

F is any field), U1 = Span(e1), U2 = Span(e2) and U3 = Span(e1 + e2). Then

U1 ∩U3 = U2 ∩U3 = {0}, so (U1 ∩U3) + (U2 ∩U3) = {0} while U1 +U2 = F 2,

so (U1 + U2) ∩ U3 = U3. We can also check directly that inequality in (b)

is strict: dim(U1 + U2 + U3) = dim(F 2) = 2, while dim(U1) + dim(U2) +

dim(U3)−dim(U1∩U2)−dim(U1∩U3)−dim(U2∩U3)+ dim(U1∩U2∩U3) =

1 + 1 + 1− 0− 0− 0 + 0 = 3.

5. Given a vector space V and an integer k ≥ 1, denote by Subk(V ) the set

of all k-dimensional subspaces of V .

(a) Let V and W be isomorphic finite-dimensional vector spaces over the

same field. For each k ≥ 0 construct a bijection between the sets

Subk(V ) and Subk(W ). Make sure to prove that your map is indeed a

bijection and has correct domain and codomain.

(b) Let V be a finite-dimensional vector space, and let n = dim(V ). Prove

that for any integer k between 0 and dim(V ) there is a natural injective

map φ : Subk(V )→ Subn−k(V
∗) where V ∗ is the dual space.

Solution: (a) Since V and W are isomorphic, there exists an isomorphism

T : V → W . Define the map Φ : Subk(V )→ Subk(W ) given by

Φ(X) = T (X) (∗ ∗ ∗)
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Note that on the left-hand side of (***), X is treated as a single element (of

the set Subk(V )) while on the right-hand side X is treated as a subset of V

(so by definition T (X) = {T (x) : x ∈ X}).
We will show that Φ is a bijective map, but first we need to check that Φ

is indeed a map from Subk(V ) to Subk(W ), that is, if X is a k-dimensional

subspace of V , then T (X) is a k-dimensional subspace of W .

Given a subspace X of V , define T ′ : X → T (X) by T ′(x) = T (x) for all

x ∈ X. Then T ′ is linear and injective (since T is linear and injective) and T ′

is surjective (by the choice of codomain). Thus, T ′ is an isomorphism from

X to T (X), so T (X) ∼= X. Since isomorphic vector spaces have the same

dimension, we conclude that dim(T (X)) = dim(X), as desired.

To prove bijectivity of Φ, we explicitly construct the inverse map. Define

Ψ : Subk(W ) → Subk(V ) by Ψ(Y ) = T−1(Y ) (where T−1 : W → V is the

inverse of T ). Since T−1 is also an isomorphism, by the same argument as

above, Ψ indeed maps Subk(W ) to Subk(V ). Since Ψ(Φ(X)) = T−1(T (X)) =

X for any X ∈ Subk(V ) and Φ(Ψ(Y )) = T (T−1(Y )) = Y for any Y ∈
Subk(W ), Ψ is indeed the inverse of Φ, so Φ is bijective.

(b) Define the map φ : Subk(V ) → Subn−k(V
∗) by φ(X) = Ann(X), the

annihilator of X. Since dim(Ann(X)) = dim(V ) − dim(X) = n − dim(X)

by HW#5.6, φ is indeed a map from Subk(V ) to Subn−k(V
∗).

To prove injectivity, we need to show that if Ann(X) = Ann(Y ), then

X = Y . This can be done in many different ways using one of the parts of

HW#5.5. Here is one possible argument.

SupposeX, Y ∈ Subk(V ) are s.t. Ann(X) = Ann(Y ). Then Ann(Ann(X) =

Ann(Ann(Y )), so by HW#5.5(vi), Span(ι(X)) = Span(ι(Y )) where ι is the

canonical isomorphism from V to V ∗∗. It is easy to see that for any linear

map f : V → W and any subset S of V one has Span(f(S)) = f(Span(S)).

Thus, we conclude that ι(Span(X)) = ι(Span(Y )). Since ι is injective, ap-

plying ι−1 to both sides, we get Span(X) = Span(Y ). Finally, since X and

Y are subspaces, Span(X) = X and Span(Y ) = Y , and therefore X = Y , as

desired.

6. Let p be a prime, Zp the field of congruence classes mod p and V a

vector space over Zp with dim(V ) = n <∞.

(a) Prove that |Subk(V )| = |Subn−k(V )| for all 0 ≤ k ≤ n.

(b) Assume that n = 3. Find the total number of subspaces of V (of all

possible dimensions).

Solution: (a) By Problem 5(b) there is an injective map from Subk(V ) to

Subn−k(V
∗), whence |Subk(V )| ≤ |Subn−k(V ∗)|. Since V ∗ ∼= V , by 5(a) we
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have |Subn−k(V ∗)| = |Subn−k(V )|, so

|Subk(V )| ≤ |Subn−k(V )|. (∗ ∗ ∗)

Applying (***) with k replaced by n−k, we get |Subn−k(V )| ≤ |Subn−(n−k)(V )| =
|Subk(V )|. Combining this inequality with (***), we get that |Subn−k(V )| =
|Subk(V )|.
(b) It is clear that |Sub0(V )| = |Sub3(V )| = 1, and by part (a), |Sub2(V )| =
|Sub1(V )|, so it suffices to compute |Sub1(V )|, the number of one-dimensional

subspaces of V .

Every one-dimensional subspace of V is equal to Span(v) for some nonzero

v ∈ V , and conversely for any nonzero v ∈ V , Span(v) is a one-dimensional

subspace. Moreover, Span(v) = Span(w) ⇐⇒ w is a nonzero scalar multiple

of v.

As explained in the solution to HW#2.1, there are p3− 1 nonzero vectors

in V , and any nonzero v ∈ V has precisely p− 1 nonzero multiples (namely

v, 2v, . . . , (p− 1)v). Hence the total number of distinct one-dimensional sub-

spaces is equal to p3−1
p−1 = p2 +p+1. Therefore, the total number of subspaces

in V is equal to 2 + 2(p2 + p+ 1) = 2p2 + 2p+ 4.

6


