
Algorithm for computing a Jordan basis (from Lecture 27).

Definition: Let V be a vector space, U a subspace of V and γ a subset of

V . We will say that

(a) γ is linearly independent mod U if γ is linearly independent and Span(γ)∩
U = {0}.

(b) γ is a basis for V/U if γ is linearly independent mod U and V =

Span(γ)⊕ U .

The following results are straightforward:

Proposition:

(i) If γ is a basis of V/U , it is linearly independent mod U

(ii) If γ is linearly independent mod U , then γ can be extended to a basis

of V/U

(iii) Assume that dim(V) <∞ and γ is linearly independent mod U . Then

γ is a basis of V/U ⇐⇒ |γ| = dim(V)− dim(U)

(iv) If α is a basis of U and β is a basis of V which contains α, then β \ α
is a basis of V/U .

Setup: Let V be a finite-dimensional vector space, T ∈ L(V), and assume

that χT (x) splits. For each λ ∈ Spec(T) let Kλ be the generalized eigenspace

corresponding to λ. Below we describe an algorithm for computing a basis

βλ of Kλ s.t. [T|Kλ
]βλ is in JCF. Then the ordered union tλ∈Spec(T)βλ is a

Jordan basis for T .

From now on we fix λ ∈ Spec(T) and introduce the following notations:

• Dλ(T) is the dot diagram of T corresponding to λ

• l is the largest size of a Jordan block in JCF (T) corresponding to λ

(which is equal to the number of rows in Dλ(T))

1

• Kλ(i) = Ker((T − λI)i). Thus we have

{0} = Kλ(0) ⊂ Kλ(1) ⊂ . . . ⊂ Kλ(l) = Kλ.

• For 1 ≤ i ≤ k we put

nλ(i) = dimKλ(i)−Kλ(i− 1) =

null((T −λI)i)−null((T −λI)i−1) = rk((T −λI)i−1)− rk((T −λI)i).

Thus, nλ(i) is the number of dots in the ith row ofDλ(T) and
∑l

i=1 nλ(i) =

dimKλ.

Algorithm:

Step 1: Choose a basis w11, . . . , w1,m1 for Kλ(l)/Kλ(l − 1). Note that m1 =

nλ(l)− nλ(l − 1). If l = 1, stop here.

Step 2: If l > 1, let w2i = (T − λI)w1i for 1 ≤ i ≤ m1. As proved in

class, the set {w2i}m1
i=1 lies in Kλ(l − 1) and is linearly independent mod

Kλ(l − 2), so it can be extended to a basis w21, . . . , w2m2 (with m2 ≥ m1) of

Kλ(l − 1)/Kλ(l − 2). Again note that m2 = nλ(l − 1) − nλ(l − 2). If l = 2,

stop here.

Step 3: If l > 2, let w3i = (T − λI)w2i for 1 ≤ i ≤ m2 etc.

The algorithm will end at Step l.

We can arrange the obtained vectors {wij} in a diagram as follows. Place

the vectors w11, . . . , w1,m1 in the bottom row (from right to left). Then

w21, . . . , w2,m2 in the next row, with w2,i directly above w1,i for 1 ≤ i ≤ m1

etc. Note that the diagram will have the same shape as the dot diagram

Dλ(T).

By construction, vectors in each column (to be read from top to bottom)

form a nilpotent (T−λI)-cycle. Also, by construction vectors in each row are

linearly independent. In particular, this is true for vectors in the first row,

2

the initial vectors of those nilpotent (T − λI)-cycles, so by Lemma 18.3 all

vectors in these cycles {wij} are linearly independent. Finally, the total size

of the set {wij} is
∑l

i=1(nλ(l+ 1− i)−nλ(l− i)) = nλ(l)−nλ(0) = dim(Kλ).

Therefore, {wij} is a Jordan basis for T|Kλ
and we can set βλ = {wij}.

Note that the order in which wij appear in βλ matters – we need to list

elements in each column consecutively from top to bottom (in the order

opposite to how they were constructed). The order of columns is not essential

(changing such order corresponds to permuting blocks in JCF (T)).

Below we see how the description of the above general algorithm can be

simplified in some cases of small dimensions. We treat all three possible

cases with dim(Kλ) = 3 and one case (just as a sample) with dim(Kλ) = 4.

We represent dot diagrams by listing the lengths of columns, e.g. Dλ(T) =

2 + 1 + 1 will mean the diagram with two dots in the first column, one dot

in the second and one dot in the third.

Example 1: Dλ(T) = 1 + 1 + 1 (one row of length 3). In this case l = 1,

nλ(1) = 3 and K1(λ) = Kλ = Ker(T − λI). Algorithm tells us to find a

basis w11, w12, w13 of K1(λ)/K0(λ) (which is the same as basis of Kλ since

K0(λ) = {0}) and stop there. This makes sense since l = 1 means that

Kλ = Eλ (the eigenspace), so any basis of Eλ will work as βλ.

Example 2: Dλ(T) = 3 (one column of length 3). In this case l = 3 (so the

algorithm will have three steps), nλ(1) = 1, nλ(2) = 2 and nλ(3) = 3.

The first step of the algorithm tells us to find a basis w11 for Kλ(3)/Kλ(2) =

Kλ/Kλ(2). Since dim(Kλ(3))− dim(Kλ(2)) = nλ(3)− nλ(2) = 1, any vector

w11 ∈ Kλ \Kλ(2) will serve as such a basis.

Since Dλ(T) has only one column, steps 2 and 3 amount to letting w21 =

(T − λI)w11 and w31 = (T − λI)w21 (no bases extensions are needed).

Example 3: Dλ(T) = 2 + 1 (first column has length 2, second column has

length 1). In this case l = 2, nλ(1) = 2, nλ(2) = 3.

3

The first step of the algorithm tells us to find a basis w11 for Kλ(2)/Kλ(1) =

Kλ/Kλ(1). As in Example 2, w11 can be any vector in Kλ \Kλ(1).

At the second step we let w21 = (T −λI)w11. Since dim(Kλ(1)) = 2, we need

one more vector w22 s.t. {w21, w22} is a basis of Kλ(1) = Ker(T − λI). Any

w22 ∈ Ker(T − λI) \ Span(w21) will do the job.

Example 4: Dλ(T) = 2 + 2 (two columns of length 2). In this case l = 2,

nλ(1) = 2, nλ(2) = 4.

The first step tells us to find a basis {w11, w12} forKλ(2)/Kλ(1) = Kλ/Kλ(1).

This time we need to work a little harder than in Examples 2 and 3 – ac-

cording to Proposition (iv), what we can do is to find a basis {v1, v2} of

Kλ(1) = Ker(T − λI) and then extend it to a basis {v1, v2, w11, w12} of Kλ.

Since both columns hit the bottom row, at the second step we simply let

w21 = (T − λI)w11 and w22 = (T − λI)w12. Note that {w21, w22} is also a

basis for Ker(T − λI), but it may be completely different from the one we

started with ({v1, v2}); the basis {v1, v2} served an auxiliary role and has no

significance for the final answer.

Note that in Example 4 there is an ‘ad hoc’ algorithm which in some cases

will yield the answer faster: choose any basis {v1, v2} of Ker(T − λI), then

find z1, z2 s.t. (T − λI)z1 = v1 and (T − λI)z2 = v2. Then {v1, z1, v2, z2}
is a Jordan basis for T|Kλ

. To justify this algorithm we need to explain two

things:

(i) why {v1, z1, v2, z2} is a basis and

(ii) why z1 and z2 with required properties can be found.

Condition (i) holds again by Lemma 18.3. To prove (ii) let Tλ = (T −λI)|Kλ
.

Then T 2
λ = 0, so Im(Tλ) ⊆ Ker(Tλ). We also know that dim Ker(Tλ) =

dim Ker(T −λI) = 2 and dim Im(Tλ) = dim(Kλ)−dim Ker(Tλ) = 4− 2 = 2.

Combining the two facts, we get Im(Tλ) = Ker(Tλ), which means that for

4

any v1, v2 ∈ Ker(Tλ) the equations Tλ(z1) = v1 and Tλ(z2) = v2 can be solved

for z1 and z2, which is precisely what we need for (ii).

5

